×

On Teitelbaum type \(\mathcal{L}\)-invariants of Hilbert modular forms attached to definite quaternions. (English) Zbl 1380.11048

Summary: We generalize Teitelbaum’s work on the definition of the \(\mathcal{L}\)-invariant to Hilbert modular forms that arise from definite quaternion algebras over totally real fields by the Jacquet-Langlands correspondence. Conjecturally this coincides with the Fontaine-Mazur type \(\mathcal{L}\)-invariant, defined by applying Fontaine’s theory to the Galois representation associated to Hilbert modular forms. An exceptional zero conjecture for the \(p\)-adic \(L\)-function of Hilbert modular forms is also proposed.

MSC:

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
Full Text: DOI

References:

[1] Berger, L., An introduction to the theory of \(p\)-adic representations, (Geometric Aspects of Dwork Theory (2004), Walter de Gruyter: Walter de Gruyter Berlin), 255-292 · Zbl 1118.11028
[2] Carayol, H., Sur les représentations \(l\)-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Ec. Norm. Super. (4), 19, 3, 409-468 (1986) · Zbl 0616.10025
[3] Casselman, B., On some results of Atkin and Lehner, Math. Ann., 201, 301-314 (1973) · Zbl 0239.10015
[4] Dabrowski, A., \(p\)-adic \(L\)-functions of Hilbert modular forms, Ann. Inst. Fourier, 44, 4, 1025-1041 (1994) · Zbl 0808.11035
[5] Darmon, H., Integration on \(H_p \times H\) and arithmetic applications, Ann. of Math., 154, 589-639 (2001) · Zbl 1035.11027
[6] Gerritzen, L.; van der Put, M., Schottky Groups and Mumford Curves, Lecture Notes in Math., vol. 817 (1980), Springer: Springer Berlin · Zbl 0442.14009
[7] Hida, H., Hilbert Modular Forms and Iwasawa Theory, Oxford Math. Monogr. (2006), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press Oxford · Zbl 1122.11030
[8] Iovita, A.; Spiess, M., Derivatives of \(p\)-adic \(L\)-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math., 154, 2, 333-384 (2003) · Zbl 1099.11032
[9] Jordan, B.; Livne, R., Integral Hodge theory and congruences between modular forms, Duke Math. J., 80, 2, 419-484 (1995) · Zbl 0851.11032
[10] Mazur, B., On monodromy invariants occurring in global arithmetic, and Fontaine’s theory, \((p\)-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture. \(p\)-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Boston, MA, \(1991. p\)-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture. \(p\)-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Boston, MA, 1991, Contemp. Math., vol. 165 (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-20 · Zbl 0846.11039
[11] Mok, C. P., The exceptional zero conjecture for Hilbert modular forms, Compos. Math., 145, 1-55 (2009), Part 1 · Zbl 1247.11071
[12] Saito, T., Hilbert modular forms and \(p\)-adic Hodge theory, Compos. Math., 145, 5, 1081-1113 (2009) · Zbl 1259.11060
[13] de Shalit, E., Eichler cohomology and periods of modular forms on \(p\)-adic Schottky groups, J. Reine Angew. Math., 400, 3-31 (1989) · Zbl 0674.14031
[14] Shimura, G., The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45, 3, 637-679 (1978), in Collected Papers, vol. III, No. 78c, the original version appeared in: · Zbl 0394.10015
[15] Spiess, M., On special zeros of \(p\)-adic \(L\)-functions of Hilbert modular forms, Invent. Math., 196, 69-138 (2014) · Zbl 1392.11027
[16] Teitelbaum, J., Values of \(p\)-adic \(L\)-functions and a \(p\)-adic Poisson kernel, Invent. Math., 101, 2, 395-410 (1990) · Zbl 0731.11065
[17] Varshavsky, Y., \(p\)-adic uniformization of unitary Shimura varieties. II, J. Differential Geom., 49, 1, 75-113 (1998) · Zbl 0923.11092
[18] Vigneras, M.-F., Arithmetique des Algebras de Quaternions, Lecture Notes in Math., vol. 800 (1980), Springer-Verlag · Zbl 0422.12008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.