×

On the Northcott property for special values of \(L\)-functions. (English) Zbl 07810703

The main results of this paper concern the Northcott property for special values of \(L\)-functions. First of all, the authors prove a general result about \(L\)-functions associated to pure motives, and their special values at the left of the critical strip. Another case in which the expected properties of \(L\)-functions are known is provided by the Dedekind zeta functions \(\zeta_F(s)\) associated to number fields \(F\). More precisely, let \[ \zeta_F^*(s)=\lim_{t\to s} \frac{\zeta_F(t)}{(t-s)^{\mathrm{ord}_{t=s}(\zeta_F(t))}} \] denote the first nonzero coefficient of the Taylor series for \(\zeta_F(s)\) around \(s\). The complex number \(s\) satisfies the Northcott property for a real positive number \(B\) if the set of isomorphism classes of number fields \(F\) given by \[ S_{B,s}= \lbrace [F]: |\zeta_F^*(s)|\leq B \rbrace \] is finite. It is shown that the Northcott property holds for a negative integer \(n\) or \(n=0\), and it does not hold if \(n\) is a positive integer. They also give a quantitative estimate for the size of the set \(S_{B,s}\) for th integers \(s=n\) such that the Northcott property holds.

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11G50 Heights
14K05 Algebraic theory of abelian varieties
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

References:

[1] Akhtari, S. and Vaaler, J. D.: Heights, regulators and Schinzel’s determinant inequality. Acta Arith. 172 (2016), no. 3, 285-298. · Zbl 1346.11041 · doi:10.4064/aa8253-1-2016
[2] Amoroso, F.: On a conjecture of G. Rémond. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 599-608. · Zbl 1417.11129 · doi:10.2422/2036-2145.201401_007
[3] Amoroso, F., David, S. and Zannier, U.: On fields with Property (B). Proc. Amer. Math. Soc. 142 (2014), no. 6, 1893-1910. · Zbl 1294.11112 · doi:10.1090/S0002-9939-2014-11925-3
[4] Amoroso, F. and Dvornicich, R.: A lower bound for the height in abelian extensions. J. Num-ber Theory 80 (2000), no. 2, 260-272. · Zbl 0973.11092 · doi:10.1006/jnth.1999.2451
[5] Amoroso, F. and Nuccio, F. A. E.: Algebraic numbers of small Weil’s height in CM-fields: on a theorem of Schinzel. J. Number Theory 122 (2007), no. 1, 247-260. · Zbl 1111.11032 · doi:10.1016/j.jnt.2006.04.005
[6] Anderson, G., Blasius, D., Coleman, R. and Zettler, G.: On representations of the Weil group with bounded conductor. Forum Math. 6 (1994), no. 5, 537-545. · Zbl 0849.11086 · doi:10.1515/form.1994.6.537
[7] Autissier, P., Hindry, M. and Pazuki, F.: Regulators of elliptic curves. Int. Math. Res. Not. IMRN (2021), no. 7, 4976-4993. · Zbl 1493.11093 · doi:10.1093/imrn/rny285
[8] Barban, M. B.: The ’large sieve’ method and its applications in the theory of numbers. Russ. Math. Surv. 21 (1966), no. 1, 49-103; translation from Usp. Mat. Nauk 21 (1966), no. 1 (127), 51-102. · Zbl 0234.10031 · doi:10.1070/rm1966v021n01abeh004146
[9] Belolipetsky, M.: Counting maximal arithmetic subgroups. Duke Math. J. 140 (2007), no. 1, 1-33. · Zbl 1131.22008 · doi:10.1215/S0012-7094-07-14011-0
[10] Belolipetsky, M. and Emery, V.: Hyperbolic manifolds of small volume. Doc. Math. 19 (2014), 801-814. · Zbl 1348.22013 · doi:10.4171/dm/464
[11] Bhargava, M.: Higher composition laws and applications. In International Congress of Math-ematicians. Vol. II, pp. 271-294. Eur. Math. Soc., Zürich, 2006. · Zbl 1129.11049 · doi:10.4171/022-2/13
[12] Bhargava, M.: Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants. Int. Math. Res. Not. IMRN (2007), no. 17, article no. rnm052, 20 pp. · Zbl 1145.11080 · doi:10.1093/imrn/rnm052
[13] Bloch, S. and Kato, K.: L-functions and Tamagawa numbers of motives. In The Grothendieck Festschrift, Vol. I, pp. 333-400. Progr. Math. 86, Birkhäuser Boston, Boston, MA, 1990. · Zbl 0768.14001 · doi:10.1007/978-0-8176-4574-8_9
[14] Bochner, S.: On Riemann’s functional equation with multiple Gamma factors. Ann. of Math. (2) 67 (1958), no. 1, 29-41. · Zbl 0082.29002 · doi:10.2307/1969923
[15] Bombieri, E. and Gubler, W.: Heights in Diophantine geometry. New Mathematical Mono-graphs 4, Cambridge University Press, Cambridge, 2006. · Zbl 1115.11034 · doi:10.1017/CBO9780511542879
[16] Bombieri, E. and Zannier, U.: A note on heights in certain infinite extensions of Q. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5-14 (2002). · Zbl 1072.11077
[17] Bosser, V. and Galateau, A.: Lower bounds for the canonical height on Drinfeld modules. Int. Math. Res. Not. IMRN (2019), no. 1, 165-200. · Zbl 1444.11123 · doi:10.1093/imrn/rnx112
[18] Boxer, G., Calegari, F., Gee, T. and Pilloni, V.: Abelian surfaces over totally real fields are potentially modular. Publ. Math. Inst. Hautes Études Sci. 134 (2021), no. 1, 153-501. · Zbl 1522.11045 · doi:10.1007/s10240-021-00128-2
[19] Boyd, D. W.: Kronecker’s theorem and Lehmer’s problem for polynomials in several vari-ables. J. Number Theory 13 (1981), no. 1, 116-121. · Zbl 0447.12003 · doi:10.1016/0022-314X(81)90033-0
[20] Boyd, D. W.: Mahler’s measure and special values of L-functions. Experiment. Math. 7 (1998), no. 1, 37-82. · Zbl 0932.11069 · doi:10.1080/10586458.1998.10504357
[21] Brauer, R.: On the zeta-functions of algebraic number fields. Amer. J. Math. 69 (1947), no. 2, 243-250. · Zbl 0029.01502 · doi:10.2307/2371849
[22] Breuil, C., Conrad, B., Diamond, F. and Taylor, R.: On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. · Zbl 0982.11033 · doi:10.1090/S0894-0347-01-00370-8
[23] Brown, F.: A multi-variable version of the completed Riemann zeta function and other L-functions. In Profinite monodromy, Galois representations, and complex functions, pp. 25-51. RIMS Kôkyûroku 2120, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, 2019.
[24] Brumley, F.: Effective multiplicity one on GL n and narrow zero-free regions for Rankin-Selberg L-functions. Amer. J. Math. 128 (2006), no. 6, 1455-1474. · Zbl 1137.11058 · doi:10.1353/ajm.2006.0042
[25] Brunault, F. and Zudilin, W.: Many variations of Mahler measures. A lasting symphony. Aus-tralian Mathematical Society Lecture Series 28, Cambridge University Press, Cambridge, 2020. · Zbl 1476.11002 · doi:10.1017/9781108885553
[26] Burgos Gil, J. I., Menares, R. and Rivera-Letelier, J.: On the essential minimum of Faltings’ height. Math. Comp. 87 (2018), no. 313, 2425-2459. · Zbl 1436.11077 · doi:10.1090/mcom/3286
[27] Carrizosa, M.: Petits points et multiplication complexe. Int. Math. Res. Not. IMRN (2009), no. 16, 3016-3097. · Zbl 1176.11025 · doi:10.1093/imrn/rnp042
[28] Cassels, J. W. S.: An introduction to the geometry of numbers. Classics in Mathematics, Springer, Berlin, 1997. · doi:10.1007/978-3-642-62035-5
[29] Checcoli, S. and Fehm, A.: On the Northcott property and local degrees. Proc. Amer. Math. Soc. 149 (2021), no. 6, 2403-2414. · Zbl 1470.11269 · doi:10.1090/proc/15411
[30] Checcoli, S. and Widmer, M.: On the Northcott property and other properties related to poly-nomial mappings. Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 1, 1-12. · Zbl 1290.11139 · doi:10.1017/S0305004113000042
[31] Colmez, P.: Périodes des variétés abéliennes à multiplication complexe. Ann. of Math. (2) 138 (1993), no. 3, 625-683. · Zbl 0826.14028 · doi:10.2307/2946559
[32] Conrad, B.: Gross-Zagier revisited. In Heegner points and Rankin L-series, pp. 67-163. Math. Sci. Res. Inst. Publ. 49, Cambridge Univ. Press, Cambridge, 2004. · Zbl 1072.11040 · doi:10.1017/CBO9780511756375.006
[33] Conrey, J. B. and Ghosh, A.: On the Selberg class of Dirichlet series: small degrees. Duke Math. J. 72 (1993), no. 3, 673-693. · Zbl 0796.11037 · doi:10.1215/S0012-7094-93-07225-0
[34] Couveignes, J.-M.: Short models of global fields. Preprint, arXiv: 2011.01759, 2020.
[35] David, S. and Hindry, M.: Minoration de la hauteur de Néron-Tate sur les variétés abéliennes de type CM. J. Reine Angew. Math. 529 (2000), 1-74. · Zbl 0993.11034 · doi:10.1515/crll.2000.096
[36] Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5-77. · Zbl 0237.14003 · doi:10.1007/bf02685881
[37] Deligne, P.: Valeurs de fonctions L et périodes d’intégrales. In Automorphic forms, repres-entations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 313-346. Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 1979. · Zbl 0449.10022
[38] Deligne, P.: La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137-252. · Zbl 0456.14014 · doi:10.1007/bf02684780
[39] Deligne, P.: Preuve des conjectures de Tate et de Shafarevitch (d’après G. Faltings). In Sémin-aire Bourbaki, volume 1983/1984, exposés 615-632, pp. 25-41. Astérisque 121-122, Société mathématique de France, Paris, 1985.
[40] Deligne, P.: Représentations ‘-adiques. In Séminaire sur les pinceaux arithmétiques : la con-jecture de Mordell, pp. 249-255. Astérisque 127, Société mathématique de France, Paris, 1985.
[41] Deligne, P. and Milne, J. S.: Tannakian categories. In Hodge cycles, motives, and Shimura varieties, pp. 101-228. Lecture Notes in Mathematics 900, Springer, Berlin-Heidelberg, 1982. · Zbl 0477.14004 · doi:10.1007/978-3-540-38955-2_4
[42] Deninger, C.: L-functions of mixed motives. In Motives (Seattle, WA, 1991), pp. 517-525. Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence, RI, 1994. · Zbl 0812.14001 · doi:10.1090/pspum/055.1/1265542
[43] Denis, L.: Hauteurs canoniques et modules de Drinfel’d. Math. Ann. 294 (1992), no. 2, 213-223. · Zbl 0764.11027 · doi:10.1007/BF01934322
[44] Dimitrov, V.: Number fields ordered by discriminant. MathOverflow, httpsW//mathoverflow. net/q/315345 (version: 2018-11-15).
[45] Dixit, A. B.: A uniqueness property of general Dirichlet series. J. Number Theory 206 (2020), 123-137. · Zbl 1472.11242 · doi:10.1016/j.jnt.2019.06.007
[46] Dvornicich, R. and Zannier, U.: On the properties of Northcott and of Narkiewicz for fields of algebraic numbers. Funct. Approx. Comment. Math. 39 (2008), no. 1, 163-173. · Zbl 1186.12002 · doi:10.7169/facm/1229696562
[47] Ellenberg, J. S. and Venkatesh, A.: The number of extensions of a number field with fixed degree and bounded discriminant. Ann. of Math. (2) 163 (2006), no. 2, 723-741. · Zbl 1099.11068 · doi:10.4007/annals.2006.163.723
[48] Faltings, G.: Finiteness theorems for abelian varieties over number fields. In Arithmetic geo-metry (Storrs, Conn., 1984), pp. 9-27. Springer, New York, 1986. · Zbl 0602.14044 · doi:10.1007/978-1-4613-8655-1_2
[49] Faltings, G.: Diophantine approximation on abelian varieties. Ann. of Math. (2) 133 (1991), no. 3, 549-576. · Zbl 0734.14007 · doi:10.2307/2944319
[50] Farmer, D. W., Pitale, A., Ryan, N. C. and Schmidt, R.: Analytic L-functions: definitions, theorems, and connections. Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 2, 261-280. · Zbl 1453.11107 · doi:10.1090/bull/1646
[51] Fehm, A.: Three counterexamples concerning the Northcott property of fields. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 2, 309-314. · Zbl 1441.11173 · doi:10.4171/RLM/807
[52] Fontaine, J.-M.: Valeurs spéciales des fonctions L des motifs. In Séminaire Bourbaki, volume 1991/92, exposés 745-759, Exp. no. 751, 4, 205-249. Astérisque 206, Société mathématique de France, Paris, 1992. · Zbl 0799.14006
[53] Frey, L.: Explicit small heights in infinite non-abelian extensions. Acta Arith. 199 (2021), no. 2, 111-133. · Zbl 1482.11081 · doi:10.4064/aa190514-15-1
[54] Frey, L.: Small heights in large non-Abelian extensions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 3, 1357-1393. · Zbl 1507.11048 · doi:10.2422/2036-2145.201811_018
[55] Friedman, E.: Analytic formulas for the regulator of a number field. Invent. Math. 98 (1989), no. 3, 599-622. · Zbl 0694.12006 · doi:10.1007/BF01393839
[56] Galateau, A.: Small height in fields generated by singular moduli. Proc. Amer. Math. Soc. 144 (2016), no. 7, 2771-2786. · Zbl 1383.11088 · doi:10.1090/proc/13058
[57] Gaudron, É. and Rémond, G.: Théorème des périodes et degrés minimaux d’isogénies. Com-ment. Math. Helv. 89 (2014), no. 2, 343-403. · Zbl 1297.11058 · doi:10.4171/CMH/322
[58] Généreux, X. and Lalín, M.: On the Northcott property of Dedekind zeta functions. To appear in Ramanujan J. DOI 10.1007/s11139-023-00809-y, published online (2024). · Zbl 07823304 · doi:10.1007/s11139-023-00809-y
[59] Généreux, X., Lalín, M. and Li, W.: On the Northcott property of zeta functions over function fields. Finite Fields Appl. 83 (2022), article no. 102080, 27 pp. · Zbl 1521.11045 · doi:10.1016/j.ffa.2022.102080
[60] Griffon, R.: Analogue of the Brauer-Siegel theorem for Legendre elliptic curves. J. Number Theory 193 (2018), 189-212. · Zbl 1440.11093 · doi:10.1016/j.jnt.2018.05.006
[61] Griffon, R.: A Brauer-Siegel theorem for Fermat surfaces over finite fields. J. Lond. Math. Soc. (2) 97 (2018), no. 3, 523-549. · Zbl 1414.11077 · doi:10.1112/jlms.12117
[62] Griffon, R.: Explicit L-functions and a Brauer-Siegel theorem for Hessian elliptic curves. J. Théor. Nombres Bordeaux 30 (2018), no. 3, 1059-1084. · Zbl 1441.11143 · doi:10.5802/jtnb.1065
[63] Griffon, R.: Bounds on special values of L-functions of elliptic curves in an Artin-Schreier family. Eur. J. Math. 5 (2019), no. 2, 476-517. · Zbl 1503.11096 · doi:10.1007/s40879-018-0284-3
[64] Grizzard, R.: Relative Bogomolov extensions. Acta Arith. 170 (2015), no. 1, 1-13. · Zbl 1370.11070 · doi:10.4064/aa170-1-1
[65] Grizzard, R.: Remarks on Rémond’s generalized Lehmer problems. Preprint, arXiv: 1710.11614, 2017.
[66] Gross, B., Kohnen, W. and Zagier, D.: Heegner points and derivatives of L-series. II. Math. Ann. 278 (1987), no. 1-4, 497-562. · Zbl 0641.14013 · doi:10.1007/BF01458081
[67] Gross, B. H. and Kudla, S. S.: Heights and the central critical values of triple product L-functions. Compositio Math. 81 (1992), no. 2, 143-209. · Zbl 0807.11027
[68] Gross, B. H. and Zagier, D. B.: Heegner points and derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225-320. · Zbl 0608.14019 · doi:10.1007/BF01388809
[69] Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Troisième partie.. Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5-255. · Zbl 0144.19904 · doi:10.1007/BF02684343
[70] Grothendieck, A.: Modeles de Néron et monodromie. In Groupes de monodromie en géométrie algébrique, pp. 313-523. Lecture Notes in Mathematics, Springer, Berlin, Heidel-berg, 1972. · doi:10.1007/bfb0068694
[71] Gualdi, R.: Heights of hypersurfaces in toric varieties. Algebra Number Theory 12 (2018), no. 10, 2403-2443. · Zbl 1410.14042 · doi:10.2140/ant.2018.12.2403
[72] Habegger, P.: Small height and infinite nonabelian extensions. Duke Math. J. 162 (2013), no. 11, 2027-2076. · Zbl 1282.11074 · doi:10.1215/00127094-2331342
[73] Hindry, M.: Why is it difficult to compute the Mordell-Weil group? In Diophantine geometry, pp. 197-219. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie) 4, Edizioni della Normale, Pisa, 2007. · Zbl 1219.11099
[74] Hindry, M. and Pacheco, A.: An analogue of the Brauer-Siegel theorem for abelian varieties in positive characteristic. Mosc. Math. J. 16 (2016), no. 1, 45-93. · Zbl 1382.11041 · doi:10.17323/1609-4514-2016-16-1-45-93
[75] Hindry, M. and Silverman, J. H.: Diophantine geometry. Graduate Texts in Mathematics 201, Springer, New York, 2000. · Zbl 0948.11023 · doi:10.1007/978-1-4612-1210-2
[76] Illusie, L.: Autour du théorème de monodromie locale. In Périodes p-adiques -Séminaire de Bures, 1988, pp. 9-57. Astérisque 223, Société mathématique de France, Paris, 1994. · Zbl 0837.14013 · doi:10.24033/ast.1122
[77] Iwaniec, H. and Sarnak, P.: Perspectives on the analytic theory of L-functions. In Visions in mathematics, pp. 705-741. Modern Birkhäuser Classics, Birkhäuser Basel, 2010. · Zbl 0996.11036 · doi:10.1007/978-3-0346-0425-3_6
[78] Jannsen, U.: Mixed motives and algebraic K-theory. Lecture Notes in Mathematics 1400, Springer, Berlin, 1990. · Zbl 0691.14001 · doi:10.1007/BFb0085080
[79] Jeon, B.: Hyperbolic three manifolds of bounded volume and trace field degree II. Preprint, arXiv: 1409.2069, 2014.
[80] Kato, K.: Height functions for motives. Selecta Math. (N.S.) 24 (2018), no. 1, 403-472. · Zbl 1453.14079 · doi:10.1007/s00029-017-0376-9
[81] Knapp, A. W.: Local Langlands correspondence: the Archimedean case. In Motives (Seattle, WA, 1991), pp. 393-410. Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence, RI, 1994. · Zbl 0811.11071 · doi:10.1090/pspum/055.2/1265560
[82] Koshikawa, T.: On heights of motives with semistable reduction. Preprint, arXiv: 1505.01873, 2015.
[83] Koshikawa, T.: Hodge bundles and heights of pure motives. Ph.D. Thesis, University of Chicago, 2016.
[84] Kudla, S. S.: Central derivatives of Eisenstein series and height pairings. Ann. of Math. (2) 146 (1997), no. 3, 545-646. · Zbl 0990.11032 · doi:10.2307/2952456
[85] Kudla, S. S.: Special cycles and derivatives of Eisenstein series. In Heegner points and Rankin L-series, pp. 243-270. Math. Sci. Res. Inst. Publ. 49, Cambridge University Press, Cam-bridge, 2004. · Zbl 1073.11042 · doi:10.1017/CBO9780511756375.009
[86] Kudla, S. S., Rapoport, M. and Yang, T.: Modular forms and special cycles on Shimura curves. Annals of Mathematics Studies 161, Princeton University Press, Princeton, NJ, 2006. · Zbl 1157.11027 · doi:10.1515/9781400837168
[87] Lawton, W. M.: A generalization of a theorem of Kronecker. J. Sci. Fac. Chiang Mai Univ. 4 (1977), 15-23. · Zbl 0447.12004
[88] Lehmer, D. H.: Factorization of certain cyclotomic functions. Ann. of Math. (2) 34 (1933), no. 3, 461-479. · JFM 59.0933.03 · doi:10.2307/1968172
[89] Lemke Oliver, R. J. and Thorne, F.: Upper bounds on number fields of given degree and bounded discriminant. Duke Math. J. 171 (2022), no. 15, 3077-3087. · Zbl 1504.11121 · doi:10.1215/00127094-2022-0046
[90] Li, C. and Zhang, W.: Kudla-Rapoport cycles and derivatives of local densities. J. Amer. Math. Soc. 35 (2022), no. 3, 705-797. · Zbl 1509.11053 · doi:10.1090/jams/988
[91] Li, C. and Zhang, W.: On the arithmetic Siegel-Weil formula for GSpin Shimura varieties. Invent. Math. 228 (2022), no. 3, 1353-1460. · Zbl 07526079 · doi:10.1007/s00222-022-01106-z
[92] Löbrich, S.: A gap in the spectrum of the Faltings height. J. Théor. Nombres Bordeaux 29 (2017), no. 1, 289-305. · Zbl 1416.11115 · doi:10.5802/jtnb.980
[93] Mahler, K.: On some inequalities for polynomials in several variables. J. London Math. Soc. 37 (1962), 341-344. · Zbl 0105.06301 · doi:10.1112/jlms/s1-37.1.341
[94] Maillot, V.: Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables. Mém. Soc. Math. Fr. (N.S.) (2000), no. 80, vi+129. · Zbl 0963.14009 · doi:10.24033/msmf.393
[95] May, W.: Multiplicative groups of fields. Proc. London Math. Soc. (3) 24 (1972), no. 2, 295-306. · Zbl 0232.20075 · doi:10.1112/plms/s3-24.2.295
[96] Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), no. 1-3, 437-449. · Zbl 0936.11037 · doi:10.1007/s002220050059
[97] Mestre, J.-F.: Formules explicites et minorations de conducteurs de variétés algébriques. Compositio Math. 58 (1986), no. 2, 209-232. · Zbl 0607.14012
[98] Milne, J. S.: Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pp. 103-150. Springer, New York, 1986. · Zbl 0604.14028 · doi:10.1007/978-1-4613-8655-1_5
[99] Mocz, L.: A new Northcott property for Faltings height. Preprint, arXiv: 1709.06098, 2017.
[100] Nekovář, J.: On the parity of ranks of Selmer groups. IV. Compos. Math. 145 (2009), no. 6, 1351-1359. · Zbl 1221.11150 · doi:10.1112/S0010437X09003959
[101] Neukirch, J.: Algebraic number theory. Grundlehren der mathematischen Wissenschaf-ten 322, Springer, Berlin, 1999. · Zbl 0956.11021 · doi:10.1007/978-3-662-03983-0
[102] Nguyen, T. T.: Heights and Tamagawa numbers of motives. J. Pure Appl. Algebra 226 (2022), no. 5, article no. 106933, 27 pp. · Zbl 1489.11080 · doi:10.1016/j.jpaa.2021.106933
[103] Northcott, D. G.: An inequality in the theory of arithmetic on algebraic varieties. Proc. Cam-bridge Philos. Soc. 45 (1949), 502-509. · Zbl 0035.30701 · doi:10.1017/s0305004100025202
[104] Northcott, D. G.: Periodic points on an algebraic variety. Ann. of Math. (2) 51 (1950), no. 1, 167-177. · Zbl 0036.30102 · doi:10.2307/1969504
[105] Odlyzko, A. M.: On conductors and discriminants. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 377-407. Aca-demic Press, London-New York, 1977. · Zbl 0362.12006
[106] Pazuki, F.: Theta height and Faltings height. Bull. Soc. Math. France 140 (2012), no. 1, 19-49. · Zbl 1245.14029 · doi:10.24033/bsmf.2623
[107] Pazuki, F.: Heights and regulators of number fields and elliptic curves. In Numéro consacré au trimestre “Méthodes arithmétiques et applications”, automne 2013, pp. 47-62. Publ. Math. Besançon Algèbre Théorie 2014/2, Presses Univ. Franche-Comté, Besançon, 2015. · Zbl 1366.11085 · doi:10.5802/pmb.8
[108] Pazuki, F.: Modular invariants and isogenies. Int. J. Number Theory 15 (2019), no. 3, 569-584. · Zbl 1446.11126 · doi:10.1142/S1793042119500295
[109] Pazuki, F., Technau, N. and Widmer, M.: Northcott numbers for the house and the Weil height. Bull. Lond. Math. Soc. 54 (2022), no. 5, 1873-1897. · Zbl 1539.11095 · doi:10.1112/blms.12662
[110] Perelli, A.: A survey of the Selberg class of L-functions. I. Milan J. Math. 73 (2005), no. 1, 19-52. · Zbl 1118.11037 · doi:10.1007/s00032-005-0037-x
[111] Perelli, A.: Converse theorems: from the Riemann zeta function to the Selberg class. Boll. Unione Mat. Ital. 10 (2017), no. 1, 29-53. · Zbl 1407.11105 · doi:10.1007/s40574-016-0085-x
[112] Philippon, P.: Sur des hauteurs alternatives. I. Math. Ann. 289 (1991), no. 2, 255-283. · Zbl 0726.14017 · doi:10.1007/BF01446571
[113] Philippon, P.: Sur des hauteurs alternatives. II. Ann. Inst. Fourier (Grenoble) 44 (1994), no. 4, 1043-1065. · Zbl 0878.11024 · doi:10.5802/aif.1426
[114] Philippon, P.: Sur des hauteurs alternatives. III. J. Math. Pures Appl. (9) 74 (1995), no. 4, 345-365. · Zbl 0878.11025
[115] Plessis, A.: Minoration de la hauteur de Weil dans un compositum de corps de rayon. J. Num-ber Theory 205 (2019), 246-276. · Zbl 1448.11121 · doi:10.1016/j.jnt.2019.05.008
[116] Plessis, A.: Points de petite hauteur sur une variété semi-abélienne de la forme G n m A. Bull. · Zbl 1523.11100 · doi:10.1112/blms.12693
[117] Lond. Math. Soc. 54 (2022), no. 6, 2278-2296. · Zbl 1523.11100
[118] Plessis, A.: A new way to tackle a conjecture of Rémond. Preprint, arXiv: 2201.06226, 2023.
[119] Poitou, G.: Minorations de discriminants [d’après A. M. Odlyzko]. · doi:10.1007/bfb0096066
[120] In Séminaire Bourbaki, vol. 1975/76, exposés 471-488, pp. 136-153. Lecture Notes in Mathematics 567, Springer, Berlin, Heidelberg, 1977.
[121] Pottmeyer, L. C.: Fields with the Bogomolov property. Ph.D. Thesis, Universität Regensburg, 2013. DOI 10.5283/epub.27605. · doi:10.5283/epub.27605
[122] Rapoport, M. and Zink, T.: Über die lokale Zetafunktion von Shimuravarietäten. Monodrom-iefiltration und verschwindende Zyklen in ungleicher Charakteristik. Invent. Math. 68 (1982), no. 1, 21-101. · Zbl 0498.14010 · doi:10.1007/BF01394268
[123] Ratazzi, N.: Théorème de Dobrowolski-Laurent pour les extensions abéliennes sur une courbe elliptique à multiplication complexe. Int. Math. Res. Not. (2004), no. 58, 3121-3152. · Zbl 1091.11020 · doi:10.1155/S1073792804140518
[124] Rémond, G.: Généralisations du problème de Lehmer et applications à la conjecture de Zilber-Pink. In Around the Zilber-Pink conjecture/Autour de la conjecture de Zilber-Pink, pp. 243-284. Panor. Synthèses 52, Soc. Math. France, Paris, 2017. · Zbl 1522.11071
[125] Rohrlich, D. E.: Elliptic curves and the Weil-Deligne group. In Elliptic curves and related topics, pp. 125-157. CRM Proc. Lecture Notes 4, American Mathematical Society, Provid-ence, RI, 1994. · Zbl 0852.14008 · doi:10.1090/crmp/004/10
[126] Schmidt, W. M.: Number fields of given degree and bounded discriminant. In Columbia University number theory seminar (New York, 1992), pp. 189-195. Astérisque 228, Société mathématique de France, Paris, 1995. · Zbl 0827.11069 · doi:10.24033/ast.303
[127] Scholl, A. J.: Height pairings and special values of L-functions. In Motives (Seattle, WA, 1991), pp. 571-598. Proc. Sympos. Pure Math. 55, American Mathematical Society, Provid-ence, RI, 1994. · Zbl 0817.14008 · doi:10.1090/pspum/055.1/1265545
[128] Scholze, P.: Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245-313. · Zbl 1263.14022 · doi:10.1007/s10240-012-0042-x
[129] Serre, J.-P.: Facteurs locaux des fonctions zêta des varietés algébriques (définitions et con-jectures). Séminaire Delange-Pisot-Poitou. Théorie des nombres 11 (1969-1970), no. 2, exp. no. 19, 15 pp. · Zbl 0214.48403
[130] Serre, J.-P. and Tate, J.: Good reduction of abelian varieties. Ann. of Math. (2) 88 (1968), no. 3, 492-517. · Zbl 0172.46101 · doi:10.2307/1970722
[131] Smyth, C. J.: A Kronecker-type theorem for complex polynomials in several variables. Canad. Math. Bull. 24 (1981), no. 4, 447-452. · Zbl 0475.12002 · doi:10.4153/CMB-1981-068-8
[132] Soulé, C.: Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics 33, Cambridge University Press, Cambridge, 1992. · Zbl 0812.14015 · doi:10.1017/CBO9780511623950
[133] Stark, H. M.: Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135-152. · Zbl 0278.12005 · doi:10.1007/BF01405166
[134] Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. In Séminaire Bourbaki, années 1964/65 1965/66, exposés 277-312, pp. 415-440. Séminaire Bourbaki 9, Société mathématique de France, Paris, 1966. · Zbl 0199.55604
[135] Tate, J.: Number theoretic background. In Automorphic forms, representations and L-func-tions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 3-26. Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 1979. · Zbl 0422.12007 · doi:10.1090/pspum/033.2/546607
[136] Türkelli, S.: Connected components of Hurwitz schemes and Malle’s conjecture. J. Number Theory 155 (2015), 163-201. · Zbl 1325.11122 · doi:10.1016/j.jnt.2015.03.005
[137] Ullmo, E.: Positivité et discrétion des points algébriques des courbes. Ann. of Math. (2) 147 (1998), no. 1, 167-179. · Zbl 0934.14013 · doi:10.2307/120987
[138] Ulmer, D.: Conductors of ‘-adic representations. Proc. Amer. Math. Soc. 144 (2016), no. 6, 2291-2299. · Zbl 1383.11076 · doi:10.1090/proc/12880
[139] Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics 800, Springer, Berlin, 1980. · Zbl 0422.12008 · doi:10.1007/BFb0091027
[140] Watkins, M.: Some heuristics about elliptic curves. Experiment. Math. 17 (2008), no. 1, 105-125. · Zbl 1151.14025 · doi:10.1080/10586458.2008.10129019
[141] Widmer, M.: On certain infinite extensions of the rationals with Northcott property. Monatsh. Math. 162 (2011), no. 3, 341-353. · Zbl 1220.11133 · doi:10.1007/s00605-009-0162-7
[142] Yuan, X., Zhang, S.-W. and Zhang, W.: The Gross-Zagier formula on Shimura curves. Annals of Mathematics Studies 184, Princeton University Press, Princeton, NJ, 2013. · Zbl 1272.11082 · doi:10.1515/9781400845644
[143] Zhang, S.: Positive line bundles on arithmetic varieties. J. Amer. Math. Soc. 8 (1995), no. 1, 187-221. · Zbl 0861.14018 · doi:10.2307/2152886
[144] Zhang, S.: Small points and adelic metrics. J. Algebraic Geom. 4 (1995), no. 2, 281-300. · Zbl 0861.14019
[145] Zhang, S.-W.: Equidistribution of small points on abelian varieties. Ann. of Math. (2) 147 (1998), no. 1, 159-165. · Zbl 0991.11034 · doi:10.2307/120986
[146] Zimmert, R.: Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math. 62 (1981), no. 3, 367-380. · Zbl 0456.12003 · doi:10.1007/BF01394249
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.