×

Analogue of the Brauer-Siegel theorem for Legendre elliptic curves. (English) Zbl 1440.11093

Summary: We prove an analogue of the Brauer-Siegel theorem for the Legendre elliptic curves over \(K = \mathbb{F}_q(t)\). Namely, denoting by \(E_d\) the elliptic curve with model \(y^2 = x(x + 1)(x + t^d)\) over \(K\), we show that, for \(d \rightarrow \infty\) ranging over the integers, one has \[ \log(| \mathrm{III}(E_d / K) | \cdot \mathrm{Reg}(E_d / K)) \sim \log H(E_d / K) \sim \frac{\log q}{2} \cdot d . \] Here, \(H(E_d / K)\) denotes the exponential differential height of \(E_d\), \(\mathrm{III}(E_d / K)\) its Tate-Shafarevich group (which is known to be finite), and \(\mathrm{Reg}(E_d / K)\) its Néron-Tate regulator.

MSC:

11G05 Elliptic curves over global fields
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
11M99 Zeta and \(L\)-functions: analytic theory
11R47 Other analytic theory

References:

[1] Brumer, A., The average rank of elliptic curves. I, Invent. Math., 109, 3, 445-472, (1992) · Zbl 0783.14019
[2] Conceição, R. P.; Hall, C.; Ulmer, D., Explicit points on the Legendre curve II, Math. Res. Lett., 21, 2, 261-280, (2014) · Zbl 1312.14065
[3] Griffon, R., Analogues du théorème de Brauer-Siegel pour quelques familles de courbes elliptiques, (2016), Université Paris Diderot, PhD thesis
[4] Griffon, R., A Brauer-Siegel theorem for Fermat surfaces over finite fields, J. Lond. Math. Soc., 97, 3, 523-549, (2018) · Zbl 1414.11077
[5] Hindry, M., Why is it difficult to compute the Mordell-Weil group?, (Diophantine Geometry, CRM Series, vol. 4, (2007), Ed. Norm Pisa), 197-219 · Zbl 1219.11099
[6] Hindry, M.; Pacheco, A., An analogue of the Brauer-Siegel theorem for abelian varieties in positive characteristic, Mosc. Math. J., 16, 1, 45-93, (2016) · Zbl 1382.11041
[7] Ireland, K.; Rosen, M., A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, (1990), Springer-Verlag · Zbl 0712.11001
[8] Kato, K.; Trihan, F., On the conjectures of Birch and Swinnerton-Dyer in characteristic \(p > 0\), Invent. Math., 153, 3, 537-592, (2003) · Zbl 1046.11047
[9] Lang, S., Conjectured Diophantine estimates on elliptic curves, (Arithmetic and Geometry, vol. I, Progr. Math., vol. 35, (1983), Birkhäuser Boston Boston, MA), 155-171 · Zbl 0529.14017
[10] Milne, J. S., On a conjecture of Artin and Tate, Ann. of Math. (2), 102, 3, 517-533, (1975) · Zbl 0343.14005
[11] Shafarevich, I. R.; Tate, J. T., The rank of elliptic curves, Dokl. Akad. Nauk SSSR, 175, 770-773, (1967) · Zbl 0168.42201
[12] Shioda, T., Some observations on Jacobi sums, (Galois Representations and Arithmetic Algebraic Geometry, Kyoto, 1985/Tokyo, 1986, Adv. Stud. Pure Math., vol. 12, (1987), North-Holland), 119-135 · Zbl 0644.12002
[13] Silverman, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, (1994), Springer-Verlag New York · Zbl 0911.14015
[14] Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, (2009), Springer Dordrecht · Zbl 1194.11005
[15] Tate, J. T., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, (Séminaire Bourbaki, vol. 9, (1965/1966), Soc. Math. France Paris), 415-440, (Exp. No. 306) · Zbl 0199.55604
[16] Tate, J. T., Conjectures on algebraic cycles in l-adic cohomology, (Motives, Seattle, WA, 1991, Proc. Sympos. Pure Math., vol. 55, (1994), Amer. Math. Soc.), 71-83 · Zbl 0814.14009
[17] Ulmer, D., Elliptic curves with large rank over function fields, Ann. of Math. (2), 155, 1, 295-315, (2002) · Zbl 1109.11314
[18] Ulmer, D., Elliptic curves over function fields, (Arithmetic of L-Functions, IAS/Park City Math. Ser., vol. 18, (2011), Amer. Math. Soc. Providence, RI), 211-280 · Zbl 1323.11037
[19] Ulmer, D., On Mordell-Weil groups of Jacobians over function fields, J. Inst. Math. Jussieu, 12, 1, 1-29, (2013) · Zbl 1318.14025
[20] Ulmer, D., Explicit points on the Legendre curve, J. Number Theory, 136, 165-194, (2014) · Zbl 1297.11055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.