×

Theta height and Faltings height. (Hauteur Thêta et hauteur de Faltings.) (English. French summary) Zbl 1245.14029

Let \(A\) be a principally polarized abelian variety defined over a number field \(K\), where the principal polarization is defined by a fixed ample symmetric line bundle \(L\) on \(A\). The aim of the paper under review is to give an explicit comparison between the Theta height \(h_\Theta(A,L)\) and the stable Faltings height \(h_F(A)\) of \(A\). The original ideas are due to J.-B. Bost and S. David. As an application of this study, the author shows that an explicit Lang-Silverman inequality (Lang-Silverman’s conjecture, J. H. Silverman [Duke Math. J. 51, 395–403 (1984; Zbl 0579.14035)]) would give an explicit upper bound on the number of \(K\)-rational points on a curve of genus \(g\geq2\) independent of the height of the Jacobian of the curve.
Reviewer: Shun Tang (Bonn)

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G50 Heights
14G05 Rational points

Citations:

Zbl 0579.14035

References:

[1] C. Birkenhake & H. Lange -Complex abelian varieties, second ed., Grundl. Math. Wiss., vol. 302, Springer, 2004. · Zbl 1056.14063
[2] J.-B. Bost -“Arakelov geometry of Abelian varieties”, Max-Planck In-stitut für Math. Technical Reports 96-51 (1996).
[3] , “Intrinsic heights of stable varieties and abelian varieties”, Duke Math. J. 82 (1996), p. 21-70. · Zbl 0867.14010
[4] , “Périodes et isogenies des variétés abéliennes sur les corps de nom-bres (d”après D. Masser et G. Wüstholz)”, Astérisque 237 (1996), p. 115-161, Séminaire Bourbaki, vol. 1994/95, exposé n o 795. · Zbl 0936.11042
[5] J.-B. Bost & S. David -“Notes on the comparison of heights of Abelian varieties”, letter to D. Masser and G. Wüstholz, 1995.
[6] L. Breen -Fonctions thêta et théorème du cube, Lecture Notes in Math., vol. 980, Springer, 1983. · Zbl 0558.14029
[7] BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
[8] S. David -“Fonctions thêta et points de torsion des variétés abéliennes”, Compositio Math. 78 (1991), p. 121-160. · Zbl 0741.14025
[9] , “Minorations de hauteurs sur les variétés abéliennes”, Bull. Soc. Math. France 121 (1993), p. 509-544. · Zbl 0803.11031
[10] S. David & P. Philippon -“Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes. II”, Comment. Math. Helv. 77 (2002), p. 639-700. · Zbl 1030.11026
[11] P. Deligne -“Preuve des conjectures de Tate et de Shafarevitch (d”après G. Faltings)”, Astérisque 121-122 (1985), p. 25-41, Séminaire Bourbaki, vol. 1983/84, exposé n o 616. · Zbl 0591.14026
[12] T. de Diego -“Points rationnels sur les familles de courbes de genre au moins 2”, J. Number Theory 67 (1997), p. 85-114. · Zbl 0896.11025
[13] G. Faltings -“Endlichkeitssätze für abelsche Varietäten über Zahlkör-pern”, Invent. Math. 73 (1983), p. 349-366. · Zbl 0588.14026
[14] G. Faltings & C.-L. Chai -Degeneration of abelian varieties, Ergebn. Math. Grenzg., vol. 22, Springer, 1990. · Zbl 0744.14031
[15] P. Graftieaux -“Formal groups and the isogeny theorem”, Duke Math. J. 106 (2001), p. 81-121. · Zbl 1064.14045
[16] R. Hartshorne -Algebraic geometry, Graduate Texts in Math., vol. 52, Springer, 1977. · Zbl 0367.14001
[17] J.-i. Igusa -Theta functions, Die Grund. Math. Wiss., vol. 194, Springer, 1972. · Zbl 0251.14016
[18] D. W. Masser -“Small values of heights on families of abelian varieties”, in Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Math., vol. 1290, Springer, 1987, p. 109-148. · Zbl 0639.14025
[19] D. W. Masser & G. Wüstholz -“Periods and minimal abelian subva-rieties”, Ann. of Math. 137 (1993), p. 407-458. · Zbl 0796.11023
[20] L. Moret-Bailly -“Compactifications, hauteurs et finitude”, Astérisque 127 (1985), p. 113-129. · Zbl 1182.14048
[21] , “Pinceaux de variétés abéliennes”, Astérisque 129 (1985). · Zbl 0595.14032
[22] , “Sur l”équation fonctionnelle de la fonction thêta de Riemann”, Compositio Math. 75 (1990), p. 203-217. · Zbl 0728.14039
[23] D. Mumford -“On the equations defining abelian varieties. I”, Invent. Math. 1 (1966), p. 287-354. · Zbl 0219.14024
[24] , “On the equations defining abelian varieties. II”, Invent. Math. 3 (1967), p. 75-135.
[25] F. Pazuki -“Minoration de la hauteur de Néron-Tate sur les variétés abéliennes : sur la conjecture de Lang et Silverman”, thèse de doctorat, Université de Bordeaux 1, 2008. tome 140 -2012 -n o 1
[26] , “Remarques sur une conjecture de Lang”, J. Théor. Nombres Bor-deaux 22 (2010), p. 161-179. · Zbl 1268.11089
[27] M. Raynaud -“Hauteurs et isogénies”, Astérisque 127 (1985), p. 199-234. · Zbl 1182.14049
[28] G. Rémond -“Hauteurs thêta et construction de Kodaira”, J. Number Theory 78 (1999), p. 287-311. · Zbl 0947.14016
[29] , “Décompte dans une conjecture de Lang”, Invent. Math. 142 (2000), p. 513-545. · Zbl 0972.11054
[30] G. Shimura -“On the derivatives of theta functions and modular forms”, Duke Math. J. 44 (1977), p. 365-387. · Zbl 0371.14023
[31] J. H. Silverman -“Lower bounds for height functions”, Duke Math. J. 51 (1984), p. 395-403. · Zbl 0579.14035
[32] , The arithmetic of elliptic curves, Graduate Texts in Math., vol. 106, Springer, 1992.
[33] L. Szpiro -“Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell”, Astérisque 127 (1985). · Zbl 0588.14028
[34] BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.