×

Development of advective dynamic stabilization scheme for ISPH simulations of free-surface fluid flows. (English) Zbl 07761057

Summary: This study presents an enhanced version of a numerical stabilizing scheme, namely, the Dynamic Stabilization scheme (DS) by N. Tsuruta et al. [ibid. 82, 158–164 (2013; Zbl 1290.76127)], referred to as the Advective DS scheme (ADS) for further enhancement of the numerical stability and accuracy in ISPH simulations of free-surface fluid flows. To ensure general stability of calculations, particle methods may benefit from particle regularization schemes including artificial repulsive force schemes to keep particles equally distanced. DS explicitly provides a stabilizing force based on the overlapped state of a target particle and its neighboring particle, resulting in a momentum-conservative repulsive force and stable simulations. However, DS may also result in numerical noises and numerical dissipation. Such numerical noises stem from the excess stabilizing forces because of consideration of the particle positions only. The approaching velocities of particles, corresponding to the divergence-free condition, are ignored. To precisely consider the dynamic states of particles in derivation of stabilizing forces, in ADS, the approaching velocities are additionally considered and the stabilizing forces are derived in a variationally consistent form based on time rate of particle overlapping state, to precisely recover the exact deteriorated particle regularity state. The enhanced performance of the proposed ADS scheme is shown through some benchmark tests including a Taylor-Green vortex, a dam break as a violent free-surface flow, an oscillating drop and a rotating square patch. The enhanced performance of ADS in terms of reproduced pressure and velocity fields, energy conservation and convergence are well demonstrated.

MSC:

76-XX Fluid mechanics

Citations:

Zbl 1290.76127
Full Text: DOI

References:

[1] Shao, S. D.; Lo, E. Y.M., Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Adv Water Resour, 26, 7, 787-800 (2003)
[2] Swegle J.W., Attaway S.W., Heinstein M.W., Mello F.J., Hicks D.L. An analysis of smoothed particle hydrodynamics. Sandia Report 1994: SAND93-2513. https://doi.org/10.2172/10159839.
[3] Swegle J.W. Conservation of momentum and tensile instability in particle methods. Sandia Report 2000: SAND 2000-1223. https://doi.org/10.2172/759439.
[4] Arai, E.; Tartakovsky, A.; Holt, R. G.; Grace, S.; Ryan, E., Comparison of surface tension generation methods in smoothed particle hydrodynamics for dynamic systems, Comput Fluids, 203, Article 104540 pp. (2020) · Zbl 1519.76239
[5] Geara, S.; Martin, S.; Adami, S.; Petry, W.; Allenou, J.; Stepnik, B.; Bonnefoy, O., A new SPH density formulation for 3D free-surface flows, Comput Fluids, 232, Article 105193 pp. (2022) · Zbl 1521.76654
[6] Liu, Q.; Sun, Z.; Sun, Y.; Zhang, K.; Xi, G., Symmetric boundary condition for the MPS method with surface tension model, Comput Fluids, 235, Article 105283 pp. (2022) · Zbl 1521.76680
[7] Monaghan, J. J., Smoothed particle hydrodynamics, Annu Rev Astron Astrophys, 30, 543-574 (1992)
[8] Guenther C., Hicks D.L., Swegle, J.W. Conservative smoothing versus artificial viscosity. Sandia Report 1994: SAND94-1853. https://doi.org/10.2172/10187573.
[9] Ferrari, A.; Dumbser, M.; Toro, E. F.; Armanini, A., A new 3D parallel SPH scheme for free surface flows, Comput Fluids, 38, 6, 1203-1217 (2009) · Zbl 1242.76270
[10] Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Le Touze, D.; Graziani, G., δ-SPH model for simulating violent impact flows, Comput Methods Appl Mech Eng, 200, 3-16, 1526-1542 (2011) · Zbl 1228.76116
[11] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in Incompressible SPH (ISPH) based on the projection method and a new approach, J Comput Phys, 228, 18, 6703-6725 (2009) · Zbl 1261.76047
[12] Khayyer, A.; Gotoh, H.; Shimizu, Y., Comparative study on accuracy and conservation properties of two particles regularization schemes and proposal of an optimized particle shifting scheme in ISPH context, J Comput Phys, 332, 236-256 (2017) · Zbl 1378.76094
[13] Adami, S.; Hu, X. Y.; Adams, N. A., A transport-velocity formulation for smoothed particle hydrodynamics, J Comput Phys, 241, 292-307 (2013) · Zbl 1349.76659
[14] Oger, G.; Marrone, S.; Touzé, D. L.; de Leffe, M., SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, J Comput Phys, 313, 76-98 (2016) · Zbl 1349.65537
[15] Michel, J.; Vergnaud, A.; Oger, G.; Hermange, C.; Touzé, D. L., On Particle Shifting Techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law, J Comput Phys, 459, Article 110999 pp. (2022) · Zbl 07525115
[16] Parshikov, A. N.; Medin, S. A., Smoothed Particle Hydrodynamics using interparticle contact algorithms, J Comput Phys, 180, 1, 358-382 (2002) · Zbl 1130.76408
[17] Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A., A consistent approach to particle shifting in the δ-Plus-SPH model, Comput Methods Appl Mech Eng, 348, 912-934 (2019) · Zbl 1440.76124
[18] Monaghan, J. J., SPH without a tensile instability, J Comput Phys, 159, 2, 290-311 (2000) · Zbl 0980.76065
[19] Tsuruta, N.; Khayyer, A.; Gotoh, H., A short note on Dynamic Stabilization of moving particle semi-implicit method, Comput Fluids, 82, 158-164 (2013) · Zbl 1290.76127
[20] Tsuruta, N.; Gotoh, H.; Suzuki, K.; Ikari, H.; Shimosako, K., Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems, Coast Eng J, 61, 41-62 (2019)
[21] Tsuruta, N.; Khayyer, A.; Gotoh, H., Space potential particles to enhance the stability of projection-based particle methods, Int J Comut Fluid Dyn, 29, 1, 100-119 (2015) · Zbl 07514817
[22] Gingold, R. A.; Monaghan, J. J., Kernel Estimates as a basis for general particle methods in hydrodynamics, J Comput Phys, 46, 3, 429-453 (1982) · Zbl 0487.76010
[23] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J Comput Phys, 191, 448-475 (2003) · Zbl 1028.76039
[24] Koshizuka, S.; Oka, Y., Moving particle semi-implicit method for fragmentation of incompressible fluid, Nucl Sci Eng, 123, 421-434 (1996)
[25] Koshizuka, S.; Nobe, A.; Oka, Y., Numerical analysis of breaking waves using the moving particle semi-implicit method, Int J Numer Method Fluids, 26, 751-769 (1998) · Zbl 0928.76086
[26] Khayyer, A.; Gotoh, H.; Shao, S. D., Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves, Coast Eng, 55, 3, 236-250 (2008)
[27] Khayyer, A.; Gotoh, H., Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure, Coast Eng, 56, 419-440 (2009)
[28] Khayyer, A.; Gotoh, H., A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, Appl Ocean Res, 32, 1, 124-131 (2010)
[29] Khayyer, A.; Gotoh, H., Enhancement of stability and accuracy of the moving particle semi-implicit method, J Comput Phys, 230, 3093-3118 (2011) · Zbl 1316.76084
[30] Gotoh, H.; Khayyer, A.; Ikari, H.; Arikawa, T.; Shimosako, K., On enhancement of Incompressible SPH method for simulation of violent sloshing flows, Appl Ocean Res, 46, 104-115 (2014)
[31] Gotoh, H.; Khayyer, A., On the State-Of-The-Art of particle methods for coastal and ocean engineering, Coast Eng J, 60, 1, 79-103 (2018)
[32] Harada, E.; Ikari, H.; Khayyer, A.; Gotoh, H., Numerical simulation for swash morphodynamics by DEM-MPS coupling model, Coast Eng J, 60, 1, 2-14 (2018)
[33] Shimizu, Y.; Khayyer, A.; Gotoh, H.; Nagashima, K., An enhanced multiphase ISPH-based method for accurate modeling of oil spill, Coast Eng J, 62, 4, 625-646 (2020)
[34] Ikari, H.; Yamano, T.; Gotoh, H., Multiphase particle method using an elastoplastic solid phase model for the diffusion of dumped sand from a split hopper, Comput Fluids, 208, Article 104639 pp. (2020) · Zbl 1502.76121
[35] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv Comput Math, 4, 389-396 (1995) · Zbl 0838.41014
[36] Khayyer, A.; Shimizu, Y.; Gotoh, T.; Gotoh, H., Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flows, Appl Math Model, 116, 84-121 (2023) · Zbl 1515.76118
[37] Jandaghian, M.; Krimi, A.; Zarrati, A. R.; Shakibaeinia, A., Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques, J Comput Phys, 434, Article 110202 pp. (2021) · Zbl 07508520
[38] Jandaghian, M.; Siaben, H. M.; Shakibaeinia, A., Stability and accuracy of the weakly compressible SPH with particle regularization techniques, Eur J Mech B Fluids, 94, 314-333 (2022) · Zbl 1487.76058
[39] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 3, 375-389 (1977) · Zbl 0421.76032
[40] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024 (1977)
[41] Sun, P. N.; Pilloton, C.; Antuono, M.; Colagrossi, A., Inclusion of an acoustic damper term in weakly-compressible SPH models, J Comput Phys, 483, Article 112056 pp. (2023) · Zbl 07679176
[42] Lind, S. J.; Xu, R.; Stansby, P. K.; Rogers, B. D., Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J Comput Phys, 231, 4, 1499-1523 (2012) · Zbl 1286.76118
[43] Khayyer, A.; Gotoh, H.; Shimizu, Y.; Gotoh, K., On enhancement of energy conservation properties of projection-based particle methods, Eur J Mech B Fluids, 66, 20-37 (2017) · Zbl 1408.76414
[44] Monaghan, J. J.; Rafiee, A., A simple SPH algorithm for multi-fluid flow with high density ratios, Int J Numer Methods Fluids, 71, 5, 537-561 (2013) · Zbl 1430.76400
[45] Antuono, M.; Marrone, S.; Colagrossi, A.; Bouscasse, B., Energy balance in the δ- SPH scheme, Comput Methods Appl Mech Eng, 289, 209-226 (2015) · Zbl 1423.76360
[46] Marrone, S.; Colagrossi, A.; Mascio, A. D.; Touzé, D. L., Prediction of energy losses in water impacts using incompressible and weakly compressible models, J Fluids Struct, 54, 802-822 (2015)
[47] Touzé, D. L.; Colagrossi, A.; Colicchio, G.; Greco, M., A critical investigation of smoothed particle hydrodynamics applied to problems with free surfaces, Int J Numer Methods Fluids, 73, 660-691 (2013) · Zbl 1455.76148
[48] Greco, M.; Faltinsen, O. M.; Landrini, M., Shipping of water on a two-dimensional structure, J Fluid Mech, 525, 309-332 (2005) · Zbl 1065.76003
[49] Dehnen, W.; Aly, H., Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Mon Not R Astron Soc, 425, 2, 1068-1082 (2012)
[50] Lyu, H. G.; Sun, P. N.; Huang, X. T.; Chen, S. H.; Zhang, A. M., On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid-structure interaction problems in ocean engineering, Appl Ocean Res, Article 117102938 pp. (2021)
[51] Ganzenmüller, G. C., An hourglass control algorithm for Lagrangian smooth particle hydrodynamics, Comput Methods Appl Mech Eng, 289, 87-106 (2015) · Zbl 1423.74948
[52] Xiao, H.; Jin, Y. C., Development of explicit moving particle simulation method with applications, Comput Fluids, 235, Article 105270 pp. (2022) · Zbl 1521.76717
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.