×

\(\delta \)-SPH model for simulating violent impact flows. (English) Zbl 1228.76116

Summary: A smoothed particle hydrodynamics model with numerical diffusive terms, hereinafter referred to as \(\delta \)-SPH [1] is used to analyze violent water flows. The boundary conditions on solid surfaces of arbitrary shape are enforced with a new technique based on fixed ghost particles. The violent impacts studied result from dam-break water flows striking obstacles of different shapes. The numerical results are validated against experimental data from the literature and solutions from a Navier-Stokes Level-Set solver. Predicted impact pressures are also compared with analytical solutions. The proposed scheme thus proves to be accurate and robust for the prediction of global and local loads of impact flows on structures.

MSC:

76M28 Particle methods and lattice-gas methods
76N15 Gas dynamics (general theory)
Full Text: DOI

References:

[1] Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D., Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun., 181, 3, 532-549 (2010) · Zbl 1333.76055
[2] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge University Press · Zbl 0152.44402
[3] B. Buchner, Green Water on Ship-type Offshore Structures, Ph.D. Thesis, Delft University of Technology, 2002.; B. Buchner, Green Water on Ship-type Offshore Structures, Ph.D. Thesis, Delft University of Technology, 2002.
[4] Chen, J. K.; Beraun, J. E.; Carney, T. C., A corrective smoothed particle method for boundary value problems in heat conduction, Int. J. Numer. Methods Engrg., 46, 231-252 (1999) · Zbl 0941.65104
[5] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191, 448-475 (2003) · Zbl 1028.76039
[6] Colagrossi, A.; Antuono, M.; Le Touzé, D., Theoretical considerations on the free surface role in the SPH model, Phys. Rev. E, 79, 5, 1-13 (2009), 056701
[7] Colicchio, G.; Colagrossi, A.; Greco, M.; Landrini, L., Free-surface flow after a dam break: a comparative study, Ship Technol. Res., 49/3, 95-104 (2002)
[8] G. Colicchio, Violent Disturbance and Fragmentation of Free Surfaces, Ph.D. Thesis, University of Southampton, 2004.; G. Colicchio, Violent Disturbance and Fragmentation of Free Surfaces, Ph.D. Thesis, University of Southampton, 2004.
[9] G. Colicchio, M. Greco, O.M. Faltinsen, Fluid-body interaction on a Cartesian grid: dedicated studies for a CFD validation, in: Proceedings of the 21st International Workshop on Water Waves and Floating Bodies (IWWWFB), Loughborough, UK, 2006.; G. Colicchio, M. Greco, O.M. Faltinsen, Fluid-body interaction on a Cartesian grid: dedicated studies for a CFD validation, in: Proceedings of the 21st International Workshop on Water Waves and Floating Bodies (IWWWFB), Loughborough, UK, 2006. · Zbl 1113.76061
[10] Fries, T. P.; Matthies, H. G., Classification and overview of Meshfree methods, (Informatikbericht 2003-03 (2004), Institute of Scientific Computing, Technical University Braunschweig: Institute of Scientific Computing, Technical University Braunschweig Brunswick, Germany)
[11] M. Greco, A Two-dimensional Study of Green-Water Loading, Ph.D. Thesis, University of Trondheim, Norway, 2001.; M. Greco, A Two-dimensional Study of Green-Water Loading, Ph.D. Thesis, University of Trondheim, Norway, 2001.
[12] Greco, M.; Colicchio, G.; Faltinsen, O. M., Shipping of water on a two-dimensional structure. Part 2, J. Fluid Mech., 581, 371-399 (2007) · Zbl 1114.76313
[13] Kleefsman, K. M.T.; Fekken, G.; Veldman, A. E.P.; Iwanowski, B.; Buchner, B., A volume-of-fluid based simulation method for wave impact problems, J. Comput. Phys., 206, 363-393 (2005) · Zbl 1087.76539
[14] Liu, W. K.; Chen, Y.; Jun, S.; Chen, J. S.; Belytschko, T.; Pan, C.; Uras, R. A.; Chang, C. T., Overview and applications of the reproducing Kernel Particle methods, Arch. Comput. Methods Engrg., 3, 1, 3-80 (1996)
[15] Marrone, S.; Colagrossi, A.; Le Touzé, D.; Graziani, G., Fast free-surface detection and Level-Set function definition in SPH solvers, J. Comput. Phys., 229, 3652-3663 (2010) · Zbl 1391.76623
[16] Mei, C. C., The Applied Dynamics of Ocean Surface Waves, Advance Series on Ocean Engineering, vol. I (1983), World Scientific: World Scientific Singapore · Zbl 0562.76019
[17] Molteni, D.; Colagrossi, A., A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Comput. Phys. Commun., 180, 861-872 (2009) · Zbl 1198.76108
[18] Monaghan, J. J., Simulating free surface flows with SPH, J. Comput. Phys., 110, 399-406 (1994) · Zbl 0794.76073
[19] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Prog. Phys., 68, 1703-1759 (2005)
[20] Monaghan, J. J.; Kajtar, J. B., SPH particle boundary forces for arbitrary boundaries, Comput. Phys. Commun., 180, 10, 1811-1820 (2009) · Zbl 1197.76104
[21] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 1, 214-226 (1997) · Zbl 0889.76066
[22] G. Oger, C. Leroy, E. Jaquin, D. Le Touz, B. Alessandrini, Specific pre/post treatment for 3-D SPH applications through massive HPC simulations, in: 4th International SPHERIC Workshop, May 27-29, Nantes, 2009.; G. Oger, C. Leroy, E. Jaquin, D. Le Touz, B. Alessandrini, Specific pre/post treatment for 3-D SPH applications through massive HPC simulations, in: 4th International SPHERIC Workshop, May 27-29, Nantes, 2009.
[23] Peregrine, D. H., Water-wave impact on walls, Annu. Rev. Fluid Mech., 35, 23-43 (2003) · Zbl 1039.76007
[24] P. Raad, Mitigation of Local Tsunami Effects. <http://engr.smu.edu/waves/project.html>; P. Raad, Mitigation of Local Tsunami Effects. <http://engr.smu.edu/waves/project.html>
[25] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Methods Appl. Mech. Engng., 139, 375-408 (1996) · Zbl 0896.73075
[26] Shao, S. D., Incompressible SPH simulation of wave breaking and overtopping with turbulence modeling, Int. J. Numer. Methods Fluids, 50, 5, 597-621 (2006) · Zbl 1320.76099
[27] Taked, H.; Miyama, S. M.; Sekiya, M., Numerical simulations of viscous flows by smoothed particle hydrodynamics, Prog. Theor. Phys., 92, 5, 939-960 (1994)
[28] Taylor, G., Oblique impact of a jet on a plane surface, Philos. Trans. R. Soc. Lond. A. Math. Phys. Sci., 260, 1110, 96-100 (1966)
[29] Wagner, H., Uber stoss- und gleitvorgange an der oberflache von flussigkeiten, Z. Angew. Math. Mech., 12, 4, 192-235 (1932) · Zbl 0005.12601
[30] Zhang, S.; Yue, D. K.P.; Tanizawa, K., Simulation of plunging wave impact on a vertical wall, J. Fluid Mech., 327, 221-254 (1996) · Zbl 0905.76011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.