×

Energy balance in the \(\delta\)-SPH scheme. (English) Zbl 1423.76360

Summary: An in-depth analysis of the energy balance in the \(\delta\)-SPH model has been carried on. In comparison to the standard SPH scheme, the mechanical energy equation of the \(\delta\)-SPH variant is characterized by a further term that is generally dissipative and is related to the diffusive operator inside the continuity equation. The behaviour and the structure of such a term have been studied in detail and a number of specifically conceived test cases have been considered, highlighting that the dissipative term is generally small and it mainly acts when spurious high-frequency acoustic components are excited. In spite of such a dissipation mechanism, the \(\delta\)-SPH appears more accurate than the standard SPH scheme even in simulating inviscid fluids.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76Nxx Compressible fluids and gas dynamics
Full Text: DOI

References:

[1] Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D., Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Comm., 181, 532-549 (2010) · Zbl 1333.76055
[2] Antuono, M.; Colagrossi, A.; Marrone, S., Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Comm., 183, 2570-2580 (2012) · Zbl 1507.76152
[3] Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Le Touzé, D.; Graziani, G., \( \delta \)-SPH model for simulating violent impact flows, Comput. Methods Appl. Mech. Engrg., 200, 1526-1542 (2011) · Zbl 1228.76116
[4] Antuono, M.; Colagrossi, A.; Marrone, S.; Lugni, C., Propagation of gravity waves through an SPH scheme with numerical diffusive terms, Comput. Phys. Comm., 182, 866-877 (2011) · Zbl 1333.76054
[5] Bouscasse, B.; Antuono, M.; Colagrossi, A.; Lugni, C., Numerical and experimental investigation of nonlinear shallow water sloshing, Int. J. Nonlinear Sci. Numer. Simul., 14, 2, 123-138 (2013)
[6] Marrone, S.; Colagrossi, A.; Antuono, M.; Colicchio, G.; Graziani, G., An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers, J. Comput. Phys., 245, 456-475 (2013) · Zbl 1349.76715
[7] De Chowdhury, S.; Sannasiraj, S. A., Numerical simulation of 2D sloshing waves using SPH with diffusive terms, Appl. Ocean Res., 47, 219-240 (2014)
[8] X.Z. Lu, J.M. Cherfils, G. Pinon, E. Rivoalen, J. Brossard, SPH numerical computations of wave impact onto a vertical wall, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.; X.Z. Lu, J.M. Cherfils, G. Pinon, E. Rivoalen, J. Brossard, SPH numerical computations of wave impact onto a vertical wall, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.
[9] G. Fourtakas, B.D. Rogers, D. Laurence, 3-D SPH modelling of sediment scouring induced by rapid flows, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.; G. Fourtakas, B.D. Rogers, D. Laurence, 3-D SPH modelling of sediment scouring induced by rapid flows, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.
[10] R. Vacondio, B.D. Rogers, P. Mignosa, P.K. Stansby, 3-D SPH scheme with variable resolution: assessment of the optimal splitting refinement pattern, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.; R. Vacondio, B.D. Rogers, P. Mignosa, P.K. Stansby, 3-D SPH scheme with variable resolution: assessment of the optimal splitting refinement pattern, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014. · Zbl 1352.76100
[11] M. Clayer, J.L. Lacome, J. Limido, J.P. Vila, Pressure evaluation improvement for Euler isentropic SPH scheme, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.; M. Clayer, J.L. Lacome, J. Limido, J.P. Vila, Pressure evaluation improvement for Euler isentropic SPH scheme, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.
[12] D.D. Meringolo, F. Aristodemo, P. Groenenboom, A. Lo Schiavo, P. Veltri, M. Veltri, SPH modelling of wave pressures at vertical and perforated breakwaters, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.; D.D. Meringolo, F. Aristodemo, P. Groenenboom, A. Lo Schiavo, P. Veltri, M. Veltri, SPH modelling of wave pressures at vertical and perforated breakwaters, in: Proc. 9th International SPHERIC Workshop, Paris, France, June 2-5, 2014.
[13] A. Valizadeh, J.J. Monaghan, Density diffusion terms and solid wall models in weakly compressible SPH, in: Proc. 8th International SPHERIC Workshop, Trondheim, Norway, June 4-6, 2013.; A. Valizadeh, J.J. Monaghan, Density diffusion terms and solid wall models in weakly compressible SPH, in: Proc. 8th International SPHERIC Workshop, Trondheim, Norway, June 4-6, 2013. · Zbl 1349.76743
[14] P. Groenenboom, B. Cartwright, Pressure-corrected SPH with innovative particle regularization algorithms and non-uniform, initial particle distributions, in: Proc. 8th International SPHERIC Workshop, Trondheim, Norway, June 4-6, 2013.; P. Groenenboom, B. Cartwright, Pressure-corrected SPH with innovative particle regularization algorithms and non-uniform, initial particle distributions, in: Proc. 8th International SPHERIC Workshop, Trondheim, Norway, June 4-6, 2013.
[15] R. Canelas, R. Ferreira, A. Crespo, J. Domínguez, A generalized SPH-DEM discretization for the modelling of complex multiphasic free surface flows, in Proc. 8th International SPHERIC Workshop, Trondheim, Norway, June 4-6, 2013.; R. Canelas, R. Ferreira, A. Crespo, J. Domínguez, A generalized SPH-DEM discretization for the modelling of complex multiphasic free surface flows, in Proc. 8th International SPHERIC Workshop, Trondheim, Norway, June 4-6, 2013.
[16] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 1703-1759 (2005) · Zbl 1160.76399
[17] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Methods Appl. Mech. Engrg., 139, 375-408 (1996) · Zbl 0896.73075
[18] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191, 448-475 (2003) · Zbl 1028.76039
[19] Batchelor, G. K., An Introduction to Fluid Dynamics, 618 (1967), Cambridge University Press · Zbl 0152.44402
[20] Molteni, D.; Colagrossi, A., A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Comput. Phys. Comm., 180, 6, 861-872 (2009) · Zbl 1198.76108
[21] Ferrari, A.; Dumbser, M.; Toro, E. F.; Armanini, A., A new 3D parallel SPH scheme for free-surface flows, Comput. & Fluids, 38, 1203-1217 (2009) · Zbl 1242.76270
[22] Monaghan, J. J.; Rafiee, Ashkan, A simple SPH algorithm for multi-fluid flow with high density ratios, Internat. J. Numer. Methods Fluids, 71, 537-561 (2013) · Zbl 1430.76400
[23] Hoover, W. G.; Pierce, T. G.; Hoover, C. G.; Shugart, J. O.; Stein, C. M.; Edwards, A. L., Molecular dynamics, smoothed-particle applied mechanics, and irreversibility, Comput. Math. Appl., 28, 10-12, 155-174 (1994) · Zbl 0813.76002
[24] Posch, H. A.; Hoover, W. G.; Kum, O., Steady-state shear flows via nonequilibrium molecular dynamics and smoother-particle applied mechanics, Phys. Rev. Lett. E, 52, 2, 1711-1729 (1995)
[25] S. Marrone, D. Le Touzé, A. Colagrossi, A. Di Mascio, On the model inconsistencies in simulating breaking wave with mesh-based and particle methods, in: Proc. 9th International SPHERIC Workshop, Paris, France, June, 03-05 2014.; S. Marrone, D. Le Touzé, A. Colagrossi, A. Di Mascio, On the model inconsistencies in simulating breaking wave with mesh-based and particle methods, in: Proc. 9th International SPHERIC Workshop, Paris, France, June, 03-05 2014.
[26] Szymczak, W., Energy losses in non-classical free surface flows, (Blake, J.; Boulton-Stone, J.; Thomas, N., Bubble Dynamics and Interface Phenomena. Bubble Dynamics and Interface Phenomena, Ser. Fluid Mechanics and its Applications, vol. 23 (1994), Springer: Springer Netherlands), 413-420 · Zbl 0973.76528
[27] Seo, J. H.; Moon, Y. J., Linearized perturbed compressible equations for low Mach number aeroacoustics, J. Comput. Phys., 218, 702-719 (2006) · Zbl 1161.76546
[28] Cooker, M., Liquid impact, kinetic energy loss and compressibility: Lagrangian, Eulerian and acoustic viewpoints, J. Engrg. Math., 44, 259-276 (2002) · Zbl 1141.76341
[29] Marrone, S.; Colagrossi, A.; Di Mascio, A.; Le Touzé, D., Prediction of energy losses in water impacts using incompressible and weakly-compressible models, J. Fluids Struct. (2015), in press
[30] Monaghan, J. J.; Gingold, R. A., Shock simulation by the particle method SPH, J. Comput. Phys., 52, 374-389 (1983) · Zbl 0572.76059
[31] Suzuki, Y.; Koshizuka, S.; Oka, Y., Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flows, Comput. Methods Appl. Mech. Engrg., 196, 2876-2894 (2007) · Zbl 1175.76120
[32] Bishai Khanna, S. S., Standing waves of finite amplitude on surface of ideal liquid of finite depth, Fluid Dyn., 13, 2, 187-191 (1978) · Zbl 0443.76016
[33] Antuono, M.; Colagrossi, A., The damping of viscous gravity waves, Wave Motion, 50, 197-209 (2013) · Zbl 1360.76078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.