×

On particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law. (English) Zbl 07525115

Summary: This paper addresses the Particle Shifting Technique (PST) in the SPH schemes. Improving the accuracy of SPH schemes leads to particle clustering along the flow streamlines which turns to be detrimental for the simulations. PSTs aim at avoiding this adverse effect by slightly disordering the particles, allowing to retrieve a regular particle distribution within the kernel interpolation support. The gain in accuracy is such that this technique is now commonly adopted by the SPH practitioners, however the conditions that should be respected by a PST are not clearly discussed in the literature. In this paper, such conditions are exposed and their fulfillment by the main existing PSTs of the literature is analyzed. None of these existing PSTs fully satisfying these conditions, a novel PST is introduced. The proposed PST is validated for three different SPH schemes on 2D and 3D test cases, in presence of free-surface and solid boundaries.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Bxx Incompressible inviscid fluids
Full Text: DOI

References:

[1] Adami, S.; Hu, X. Y.; Adams, N. A., A transport-velocity formulation for smoothed particle hydrodynamics, J. Comput. Phys., 241, 292-307 (2013) · Zbl 1349.76659
[2] Antuono, M.; Bouscasse, B.; Colagrossi, A.; Marrone, S., A measure of spatial disorder in particle methods, Comput. Phys. Commun., 185, 2609-2621 (2014)
[3] Antuono, M.; Colagrossi, A.; Marrone, S.; Lugni, C., Propagation of gravity waves through an SPH scheme with numerical diffusive terms, Comput. Phys. Commun., 182, 4, 866-877 (2011) · Zbl 1333.76054
[4] Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D., Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun., 181, 3, 532-549 (2010) · Zbl 1333.76055
[5] Chiron, L., Coupling and improvements of the SPH method to treat flows involving temporal and spatial multi-scales (March 2017), Ecole Centrale de Nantes (ECN), PhD thesis
[6] Chiron, L.; De Leffe, M.; Oger, G.; Le Touzé, D., Fast and accurate SPH modelling of 3D complex wall boundaries in viscous and non viscous flows, Comput. Phys. Commun., 234, 93-111 (2019) · Zbl 07682594
[7] Colagrossi, A.; Antuono, M.; Marrone, S.; Sun, P. N.; Zhang, A. M., Notes on the SPH model within the Arbitrary-Lagrangian-Eulerian framework, (13th International SPHERIC Workshop (2018)), 22-29
[8] Colagrossi, A.; Bouscasse, B.; Antuono, M.; Marrone, S., Particle packing algorithm for SPH schemes, Comput. Phys. Commun., 183, 2, 1641-1683 (2012) · Zbl 1307.65140
[9] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191, 2, 448-475 (2003) · Zbl 1028.76039
[10] Green, M. D.; Vacondio, R.; Peiró, J., A smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equation, Comput. Fluids, 179, 632-644 (2019) · Zbl 1411.76132
[11] Khayyer, A.; Gotoh, H.; Shimizu, Y., Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context, J. Comput. Phys., 332, 236-256 (2017) · Zbl 1378.76094
[12] Koukouvinis, P. K.; Anagnostopoulos, J. S.; Papantonis, D. E., An improved MUSCL treatment for the SPH-ALE method: comparison with the standard SPH method for the jet impingement case, Int. J. Numer. Methods Fluids, 71, 9, 1152-1177 (2013) · Zbl 1431.65145
[13] Kvicinsky, S., Méthode d’analyse des écoulements 3D à surface libre: application aux turbines Pelton (2002), École Polytechnique Fédérale de Lausanne (EPFL), PhD thesis
[14] Le Touzé, D.; Colagrossi, A.; Colicchio, G.; Greco, M., A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces, Int. J. Numer. Methods Fluids, 73, 7, 660-691 (2013) · Zbl 1455.76148
[15] Leduc, J.; Leboeuf, F.; Lance, M.; Parkinson, E.; Marongiu, J.-C., Improvement of multiphase model using preconditioned Riemann solvers, (Proceedings of the \(5^{t h}\) International SPHERIC Workshop (2010)), 1-6
[16] Libersky, L. D.; Petschek, A. G.; Carney, T. C.; Hipp, J. R.; Allahdadi, F. A., High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response, J. Comput. Phys., 109, 1, 67-75 (1993) · Zbl 0791.76065
[17] Lind, S. J.; Xu, R.; Stansby, P. K.; Rogers, B. D., Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J. Comput. Phys., 231, 4, 1499-1523 (2012) · Zbl 1286.76118
[18] Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Le Touzé, D.; Graziani, G., -SPH model for simulating violent impact flows, Comput. Methods Appl. Mech. Eng., 200, 13-16, 1526-1542 (2011) · Zbl 1228.76116
[19] Marrone, S.; Colagrossi, A.; Le Touzé, D.; Graziani, G., Fast free-surface detection and level-set function definition in SPH solvers, J. Comput. Phys., 229, 10, 3652-3663 (2010) · Zbl 1391.76623
[20] Michel, J., Développements numériques de la méthode SPH couplée aux Eléments Finis appliqués au phénomène de l’hydroplanage (July 2020), Ecole Centrale de Nantes, PhD Thesis
[21] Michel, J.; Oger, G.; Le Touzé, D., Effects of particle disordering on local and global fluid volume in the SPH method and proposition of an improved SPH-ALE scheme, (Proceedings of the \(13^{t h}\) International SPHERIC Workshop (2018)), 275-282
[22] Monaghan, J. J., On the problem of penetration in particle methods, J. Comput. Phys., 82, 1-15 (1989) · Zbl 0665.76124
[23] Monaghan, J. J., SPH without a tensile instability, J. Comput. Phys., 159, 2, 290-311 (2000) · Zbl 0980.76065
[24] Monaghan, J. J.; Gingold, R. A., Shock simulation by the particle method SPH, J. Comput. Phys., 52, 2, 374-389 (1983) · Zbl 0572.76059
[25] Oger, G.; Marrone, S.; Le Touzé, D.; De Leffe, M., SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, J. Comput. Phys., 313, 76-98 (2016) · Zbl 1349.65537
[26] Parshikov, A. N.; Medin, S. A., Smoothed particle hydrodynamics using interparticle contact algorithms, J. Comput. Phys., 180, 358-382 (2002) · Zbl 1130.76408
[27] Quinlan, N. J.; Lastiwka, M.; Basa, M., Truncation error in mesh-free particle methods, Int. J. Numer. Methods Eng., 66, 13, 2064-2085 (2006) · Zbl 1110.76325
[28] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Methods Appl. Mech. Eng., 39, 375-408 (1996) · Zbl 0896.73075
[29] Renaut, G. A., Schémas d’ordre élevé pour la méthode SPH-ALE appliquée à des simulations sur machines hydrauliques (December 2015), Ecole Centrale de Lyon, PhD thesis
[30] Roe, P. L., Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18, 1, 337-365 (1986) · Zbl 0624.76093
[31] Skillen, A.; Lind, S.; Stansby, P. K.; Rogers, B. D., Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction, Comput. Methods Appl. Mech. Eng., 265, 163-173 (2013) · Zbl 1286.76120
[32] Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A.-M., A consistent approach to particle shifting in the -plus-SPH model, Comput. Methods Appl. Mech. Eng., 348, 912-934 (2019) · Zbl 1440.76124
[33] Sun, P. N.; Colagrossi, A.; Marrone, S.; Zhang, A. M., The plus-SPH model: simple procedures for a further improvement of the SPH scheme, Comput. Methods Appl. Mech. Eng., 315, 25-49 (2017) · Zbl 1439.76133
[34] Sun, P. N.; Zhang, A.-M.; Marrone, S.; Ming, F., An accurate and efficient SPH modeling of the water entry of circular cylinders, Appl. Ocean Res., 72, 60-75 (2018)
[35] Taylor, G.; Green, A. E., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. A, 158, 499-521 (1937) · JFM 63.1358.03
[36] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[37] Vila, J.-P., On particle weighted methods and smooth particle hydrodynamics, Math. Models Methods Appl. Sci., 9, 2, 161-209 (1999) · Zbl 0938.76090
[38] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 4, 389-396 (1995) · Zbl 0838.41014
[39] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J. Comput. Phys., 228, 18, 6703-6725 (2009) · Zbl 1261.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.