×

Global and local conservation of mass, momentum and kinetic energy in the simulation of compressible flow. (English) Zbl 07649294

Summary: The spatial discretization of convective terms in compressible flow equations is studied from an abstract viewpoint, for finite-difference methods and finite-volume type formulations with cell-centered numerical fluxes. General conditions are sought for the local and global conservation of primary (mass and momentum) and secondary (kinetic energy) invariants on Cartesian meshes. The analysis, based on a matrix approach, shows that sharp criteria for global and local conservation can be obtained and that in many cases these two concepts are equivalent. Explicit numerical fluxes are derived in all finite-difference formulations for which global conservation is guaranteed, even for non-uniform Cartesian meshes. The treatment reveals also an intimate relation between conservative finite-difference formulations and cell-centered finite-volume type approaches. This analogy suggests the design of wider classes of finite-difference discretizations locally preserving primary and secondary invariants.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
76Fxx Turbulence

References:

[1] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194 (2011) · Zbl 1299.76103
[2] Rozema, W.; Verstappen, R. W.C. P.; Kok, J. C.; Veldman, A. E.P., Low-dissipation simulation methods and models for turbulent subsonic flow, Arch. Comput. Methods Eng., 27, 1, 299-330 (2020)
[3] Kok, J. C., A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids, J. Comput. Phys., 228, 6811-6832 (2009) · Zbl 1261.76020
[4] Verstappen, R. W.C. P.; Veldman, A. E.P., Direct numerical simulation of turbulence at lesser costs, J. Eng. Math., 32, 143-159 (1997) · Zbl 0911.76072
[5] Verstappen, R. W.C. P.; Veldman, A. E.P., Spectro-consistent discretization: a challenge to RANS and LES, J. Eng. Math., 34, 163-179 (1998) · Zbl 0917.76059
[6] Verstappen, R. W.C. P.; Veldman, A. E.P., Symmetry-preserving discretization of turbulent flow, J. Comput. Phys., 187, 343-368 (2003) · Zbl 1062.76542
[7] Coppola, G.; Capuano, F.; de Luca, L., Discrete energy-conservation properties in the numerical simulation of the Navier-Stokes equations, Appl. Mech. Rev., 71, Article 010803 pp. (2019)
[8] Kuya, Y.; Totani, K.; Kawai, S., Kinetic energy and entropy preserving schemes for compressible flows by split convective forms, J. Comput. Phys., 375, 823-853 (2018) · Zbl 1416.76182
[9] Veldman, A. E.P., Supraconservative finite-volume methods for the Euler equations of subsonic compressible flow, SIAM Rev., 63, 756-779 (2021) · Zbl 1477.65147
[10] De Michele, C.; Coppola, G., Numerical treatment of the energy equation in compressible flows simulations, Comput. Fluids, 250, Article 105709 pp. (2023) · Zbl 1521.76535
[11] Feiereisen, W. J.; Reynolds, W. C.; Ferziger, J. H., Numerical simulation of a compressible, homogeneous, turbulent shear flow (1981), Stanford University, Report TF-13, Thermosciences Division, Mechanical Engineering
[12] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 531-545 (2004) · Zbl 1061.76044
[13] Subbareddy, P. K.; Candler, G. V., A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows, J. Comput. Phys., 228, 1347-1364 (2009) · Zbl 1157.76029
[14] Pirozzoli, S., Generalized conservative approximations of split convective derivative operators, J. Comput. Phys., 229, 19, 7180-7190 (2010) · Zbl 1426.76485
[15] Coppola, G.; Capuano, F.; Pirozzoli, S.; de Luca, L., Numerically stable formulations of convective terms for turbulent compressible flows, J. Comput. Phys., 382, 86-104 (2019) · Zbl 1451.76081
[16] Veldman, A. E.P., A general condition for kinetic-energy preserving discretization of flow transport equations, J. Comput. Phys., 398, Article 108894 pp. (2019) · Zbl 1453.65262
[17] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 5, 1252-1286 (2013) · Zbl 1373.76121
[18] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes (1981), AIAA Paper 81-1259
[19] Morton, K. W.; Sūli, E., Finite volume methods and their analysis, IMA J. Numer. Anal., 11, 2, 241-260 (1991) · Zbl 0729.65087
[20] Süli, E., The accuracy of cell vertex finite volume methods on quadrilateral meshes, Math. Comput., 59, 200, 359-382 (1992) · Zbl 0767.65072
[21] Leonard, B. P., Order of accuracy of QUICK and related convection-diffusion schemes, Appl. Math. Model., 19, 11, 640-653 (1995) · Zbl 0846.65038
[22] Nishikawa, H., The QUICK scheme is a third-order finite-volume scheme with point-valued numerical solutions, Int. J. Numer. Methods Fluids, 93, 7, 2311-2338 (2021)
[23] Rozema, W.; Kok, J. C.; Verstappen, R. W.C. P.; Veldman, A. E.P., A symmetry-preserving discretisation and regularisation model for compressible flow with application to turbulent channel flow, J. Turbul., 15, 6, 386-410 (2014)
[24] Reiss, J., A family of energy stable, skew-symmetric finite difference schemes on collocated grids, J. Sci. Comput., 65, 1-18 (2015)
[25] Rozema, W.; Kok, J. C.; Veldman, A. E.P.; Verstappen, R. W.C. P., Numerical simulation with low artificial dissipation of transitional flow over a delta wing, J. Comput. Phys., 405, Article 109182 pp. (2020)
[26] Arakawa, A., Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I, J. Comput. Phys., 1, 119-143 (1966) · Zbl 0147.44202
[27] Horiuti, K., Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow, J. Comput. Phys., 71, 2, 343-370 (1987) · Zbl 0617.76062
[28] Olshanskii, M. A.; Rebholz, L. G., Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations, J. Comput. Phys., 229, 11, 4291-4303 (2010) · Zbl 1334.76083
[29] Charnyi, S.; Heister, T.; Olshanskii, M. A.; Rebholz, L. G., Efficient discretizations for the EMAC formulation of the incompressible Navier-Stokes equations, Appl. Numer. Math., 141, 220-233 (2019) · Zbl 1478.65082
[30] Moffatt, H. K.; Tsinober, A., Helicity in laminar and turbulent flow, Annu. Rev. Fluid Mech., 24, 1, 281-312 (1992) · Zbl 0751.76018
[31] Götze, I. O.; Noguchi, H.; Gompper, G., Relevance of angular momentum conservation in mesoscale hydrodynamics simulations, Phys. Rev. E, 76, 4, Article 046705 pp. (2007)
[32] Kennedy, C. A.; Gruber, A., Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid, J. Comput. Phys., 227, 3, 1676-1700 (2008) · Zbl 1290.76135
[33] Strand, B., Summation by parts for finite difference approximations for d/dx, J. Comput. Phys., 110, 47-67 (1994) · Zbl 0792.65011
[34] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336
[35] Perot, J. B., Discrete conservation properties of unstructured mesh schemes, Annu. Rev. Fluid Mech., 43, 299-318 (2011) · Zbl 1299.76127
[36] Fisher, T. C.; Carpenter, M. H.; Nordström, J.; Yamaleev, N. K.; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375 (2013) · Zbl 1284.65102
[37] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 2, 217-237 (1960) · Zbl 0152.44802
[38] Shi, C.; Shu, C.-W., On local conservation of numerical methods for conservation laws, Comput. Fluids, 169, 3-9 (2018) · Zbl 1410.65327
[39] Castillo, J. E.; Hyman, J. M.; Shashkov, M. J.; Steinberg, S., The sensitivity and accuracy of fourth order finite-difference schemes on nonuniform grids in one dimension, Comput. Math. Appl., 30, 8, 41-55 (1995) · Zbl 0836.65025
[40] Veldman, A. E.P.; Lam, K. W., Symmetry-preserving upwind discretization of convection on non-uniform grids, Appl. Numer. Math., 58, 1881-1891 (2008) · Zbl 1153.65086
[41] Sharpe, G. E.; Styan, G. P.H., Circuit duality and the general network inverse, IEEE Trans. Circuit Theory, 12, 1, 22-27 (1965)
[42] Holley, J. W.; Guilford, J. P., Note on the double centering of dichotomized matrices, Scand. J. Psychol., 7, 1, 97-101 (1966)
[43] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), JHU Press · Zbl 0865.65009
[44] Singh, V.; Chandrashekar, P., On a linear stability issue of split form schemes for compressible flows (2021)
[45] Pirozzoli, S., Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates, J. Comput. Phys., 230, 8, 2997-3014 (2011) · Zbl 1316.76064
[46] Morinishi, Y., Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229, 276-300 (2010) · Zbl 1375.76113
[47] Remmerswaal, R. A.; Veldman, A. E.P., Towards a sharp, structure-preserving two-velocity model for two-phase flow: transport of mass and momentum (2022)
[48] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34, 188-208 (2008) · Zbl 1133.76031
[49] Ranocha, H., Comparison of some entropy conservative numerical fluxes for the Euler equations, J. Sci. Comput., 76, 1, 216-242 (2018) · Zbl 1397.65151
[50] Ranocha, H.; Gassner, G. J., Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes, Commun. Appl. Math. Comput. Sci., 4, 3, 880-903 (2022) · Zbl 1513.65418
[51] Ducros, F.; Laporte, F.; Souleres, T.; Guinot, V.; Moinat, P.; Caruelle, B., High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows, J. Comput. Phys., 161, 1, 114-139 (2000) · Zbl 0972.76066
[52] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 90-124 (1998) · Zbl 0932.76054
[53] Manteuffel, T. A.; White, A. B., The numerical solution of second-order boundary value problems on nonuniform meshes, Math. Comput., 47, 511-535 (1986) · Zbl 0635.65092
[54] Tannehill, J. C.; Anderson, D. A.; Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer (1997), Taylor and Francis: Taylor and Francis Washington
[55] Veldman, A. E.P., Discretization methods for the subsonic Reduced Navier-Stokes equations (2000), University of Groningen: University of Groningen The Netherlands, Technical report
[56] De Michele, C.; Coppola, G., An assessment of various discretizations of the energy equation in compressible flows, (The 8th European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS Congress. The 8th European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS Congress, 5-9 June 2022, Oslo, Norway (2022))
[57] van’t Hof, B.; Veldman, A. E.P., Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations, J. Comput. Phys., 231, 4723-4744 (2012) · Zbl 1245.76074
[58] van’t Hof, B.; Vuik, M. J., Symmetry-preserving finite-difference discretizations of arbitrary order on structured curvilinear staggered grids, J. Comput. Sci., 36, Article 101008 pp. (2019)
[59] Moin, P.; Squires, K.; Cabot, W.; Lee, S., A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, Fluid Dyn., 3, 11, 2746-2757 (1991) · Zbl 0753.76074
[60] Blaisdell, G. A.; Spyropoulos, E. T.; Qin, J. H., The effect of the formulation of nonlinear terms on aliasing errors in spectral methods, Appl. Numer. Math., 21, 3, 207-219 (1996) · Zbl 0858.76060
[61] Thomas, P. D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17, 10, 1030-1037 (1979) · Zbl 0436.76025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.