×

Dark matter vorticity and velocity dispersion from truncated Dyson-Schwinger equations. (English) Zbl 1543.83197

Summary: Large-scale structure formation is studied in a kinetic theory approach, extending the standard perfect pressureless fluid description for dark matter by including the velocity dispersion tensor as a dynamical degree of freedom. The evolution of power spectra for density, velocity and velocity dispersion degrees of freedom is investigated in a non-perturbative approximation scheme based on the Dyson-Schwinger equations. In particular, the generation of vorticity and velocity dispersion is studied and predictions for the corresponding power spectra are made, which qualitatively agree well with results obtained from \(N\)-body simulations. It is found that velocity dispersion grows strongly due to non-linear effects and at late times its mean value seems to be largely independent of the initial conditions. By taking this into account, a rather realistic picture of non-linear large-scale structure formation can be obtained, albeit the numerical treatment remains challenging, especially for very cold dark matter models.
{© 2024 The Author(s)}

MSC:

83F05 Relativistic cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C56 Dark matter and dark energy

Software:

CLASS; GADGET; GOTPM

References:

[1] P.J.E. Peebles, The Large-Scale Structure of the Universe, Princeton University Press (1980). · Zbl 1422.85005
[2] M. Davis and P.J.E. Peebles, On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe, Astrophys. J. Suppl. Ser.34 (1977) 425. · doi:10.1086/190456
[3] Buchert, Thomas; Dominguez, Alvaro, Modeling multistream flow in collisionless matter: approximations for large scale structure beyond shell crossing, Astron. Astrophys., 335, 395-402, 1998
[4] McDonald, Patrick, How to generate a significant effective temperature for cold dark matter, from first principles, JCAP, 04, 2011 · doi:10.1088/1475-7516/2011/04/032
[5] Pietroni, Massimo; Mangano, Gianpiero; Saviano, Ninetta; Viel, Matteo, Coarse-Grained Cosmological Perturbation Theory, JCAP, 01, 2012 · doi:10.1088/1475-7516/2012/01/019
[6] Aviles, Alejandro, Dark matter dispersion tensor in perturbation theory, Phys. Rev. D, 93, 2016 · doi:10.1103/PhysRevD.93.063517
[7] Erschfeld, Alaric; Floerchinger, Stefan, Evolution of dark matter velocity dispersion, JCAP, 06, 2019 · Zbl 1541.83147 · doi:10.1088/1475-7516/2019/06/039
[8] Garny, Mathias; Laxhuber, Dominik; Scoccimarro, Roman, Perturbation theory with dispersion and higher cumulants: Framework and linear theory, Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.063539
[9] Garny, Mathias; Laxhuber, Dominik; Scoccimarro, Roman, Perturbation theory with dispersion and higher cumulants: Nonlinear regime, Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.063540
[10] Tassev, Svetlin, The Helmholtz Hierarchy: Phase Space Statistics of Cold Dark Matter, JCAP, 10, 2011 · doi:10.1088/1475-7516/2011/10/022
[11] McDonald, Patrick; Vlah, Zvonimir, Large-scale structure perturbation theory without losing stream crossing, Phys. Rev. D, 97, 2018 · doi:10.1103/PhysRevD.97.023508
[12] Widrow, Lawrence M.; Kaiser, Nick, Using the Schrödinger equation to simulate collisionless matter, Astrophys. J. Lett., 416, L71-L74, 1993
[13] Uhlemann, Cora, Finding closure: approximating Vlasov-Poisson using finitely generated cumulants, JCAP, 10, 2018 · Zbl 1536.83206 · doi:10.1088/1475-7516/2018/10/030
[14] Pueblas, Sebastian; Scoccimarro, Roman, Generation of Vorticity and Velocity Dispersion by Orbit Crossing, Phys. Rev. D, 80, 2009 · doi:10.1103/PhysRevD.80.043504
[15] Crocce, Martin; Scoccimarro, Roman, Renormalized cosmological perturbation theory, Phys. Rev. D, 73, 2006 · doi:10.1103/PhysRevD.73.063519
[16] Crocce, Martin; Scoccimarro, Roman, Memory of initial conditions in gravitational clustering, Phys. Rev. D, 73, 2006 · doi:10.1103/PhysRevD.73.063520
[17] Crocce, Martin; Scoccimarro, Roman, Nonlinear Evolution of Baryon Acoustic Oscillations, Phys. Rev. D, 77, 2008 · doi:10.1103/PhysRevD.77.023533
[18] Pietroni, Massimo, Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations, JCAP, 10, 2008 · doi:10.1088/1475-7516/2008/10/036
[19] Taruya, Atsushi; Hiramatsu, Takashi, A Closure Theory for Non-linear Evolution of Cosmological Power Spectra, Astrophys. J., 674, 617, 2008 · doi:10.1086/526515
[20] Hiramatsu, Takashi; Taruya, Atsushi, Chasing the non-linear evolution of matter power spectrum with numerical resummation method: solution of closure equations, Phys. Rev. D, 79, 2009 · doi:10.1103/PhysRevD.79.103526
[21] Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun; Hiramatsu, Takashi, Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation Theory in Real and Redshift Spaces, Phys. Rev. D, 80, 2009 · doi:10.1103/PhysRevD.80.123503
[22] Anselmi, Stefano; Matarrese, Sabino; Pietroni, Massimo, Next-to-leading resummations in cosmological perturbation theory, JCAP, 06, 2011 · doi:10.1088/1475-7516/2011/06/015
[23] Anselmi, Stefano; Pietroni, Massimo, Nonlinear Power Spectrum from Resummed Perturbation Theory: a Leap Beyond the BAO Scale, JCAP, 12, 2012 · doi:10.1088/1475-7516/2012/12/013
[24] Bernardeau, Francis; Van de Rijt, Nicolas; Vernizzi, Filippo, Resummed propagators in multi-component cosmic fluids with the eikonal approximation, Phys. Rev. D, 85, 2012 · doi:10.1103/PhysRevD.85.063509
[25] Bernardeau, Francis; Van de Rijt, Nicolas; Vernizzi, Filippo, Power spectra in the eikonal approximation with adiabatic and nonadiabatic modes, Phys. Rev. D, 87, 2013 · doi:10.1103/PhysRevD.87.043530
[26] Baumann, Daniel; Nicolis, Alberto; Senatore, Leonardo; Zaldarriaga, Matias, Cosmological Non-Linearities as an Effective Fluid, JCAP, 07, 2012 · doi:10.1088/1475-7516/2012/07/051
[27] Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo, The Effective Field Theory of Cosmological Large Scale Structures, JHEP, 09, 082, 2012 · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[28] Porto, Rafael A.; Senatore, Leonardo; Zaldarriaga, Matias, The Lagrangian-space Effective Field Theory of Large Scale Structures, JCAP, 05, 2014 · doi:10.1088/1475-7516/2014/05/022
[29] Blas, Diego; Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim, Large scale structure from viscous dark matter, JCAP, 11, 2015 · doi:10.1088/1475-7516/2015/11/049
[30] McDonald, Patrick, Dark matter clustering: a simple renormalization group approach, Phys. Rev. D, 75, 2007 · doi:10.1103/PhysRevD.75.043514
[31] Matarrese, Sabino; Pietroni, Massimo, Resumming Cosmic Perturbations, JCAP, 06, 2007 · doi:10.1088/1475-7516/2007/06/026
[32] Matarrese, Sabino; Pietroni, Massimo, Baryonic Acoustic Oscillations via the Renormalization Group, Mod. Phys. Lett. A, 23, 25-32, 2008 · doi:10.1142/S0217732308026182
[33] Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim, Renormalization-group flow of the effective action of cosmological large-scale structures, JCAP, 01, 2017 · Zbl 1515.83349 · doi:10.1088/1475-7516/2017/01/048
[34] Floerchinger, Stefan; Garny, Mathias; Katsis, Aris; Tetradis, Nikolaos; Wiedemann, Urs Achim, The dark matter bispectrum from effective viscosity and one-particle irreducible vertices, JCAP, 09, 2019 · Zbl 1541.83153 · doi:10.1088/1475-7516/2019/09/047
[35] Erschfeld, Alaric; Floerchinger, Stefan, Cosmological functional renormalization group, extended Galilean invariance, and approximate solutions to the flow equations, Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.023506
[36] Bernardeau, F.; Colombi, S.; Gaztañaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rep., 367, 1-248, 2002 · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[37] J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press (1987). · Zbl 1130.85301
[38] Bardeen, James M.; Bond, J. R.; Kaiser, Nick; Szalay, A. S., The Statistics of Peaks of Gaussian Random Fields, Astrophys. J., 304, 15-61, 1986 · doi:10.1086/164143
[39] Watts, Peter; Coles, Peter, Statistical cosmology with quadratic density fields, Mon. Not. Roy. Astron. Soc., 338, 806, 2003 · doi:10.1046/j.1365-8711.2003.06130.x
[40] Boyanovsky, Daniel; Wu, Jun, Small scale aspects of warm dark matter: power spectra and acoustic oscillations, Phys. Rev. D, 83, 2011 · doi:10.1103/PhysRevD.83.043524
[41] Scoccimarro, Roman, A new angle on gravitational clustering, Ann. N. Y. Acad. Sci., 927, 13, 2001 · doi:10.1111/j.1749-6632.2001.tb05618.x
[42] Valageas, P., A new approach to gravitational clustering: a path-integral formalism and large-N expansions, Astron. Astrophys., 421, 23-40, 2004 · Zbl 1068.83516 · doi:10.1051/0004-6361:20040125
[43] Valageas, Patrick, Large-N expansions applied to gravitational clustering, Astron. Astrophys., 465, 725, 2007 · doi:10.1051/0004-6361:20066832
[44] Silveira, V.; Waga, I., Decaying Lambda cosmologies and power spectrum, Phys. Rev. D, 50, 4890-4894, 1994 · doi:10.1103/PhysRevD.50.4890
[45] Dyson, F. J., The S matrix in quantum electrodynamics, Phys. Rev., 75, 1736-1755, 1949 · Zbl 0033.14201 · doi:10.1103/PhysRev.75.1736
[46] Schwinger, Julian S., On the Green’s functions of quantized fields. Part 1, Proc. Natl. Acad. Sci. U.S.A., 37, 452-455, 1951 · Zbl 0044.43001 · doi:10.1073/pnas.37.7.452
[47] Schwinger, Julian S., On the Green’s functions of quantized fields. Part 2, Proc. Natl. Acad. Sci. U.S.A., 37, 455-459, 1951 · Zbl 0044.43001 · doi:10.1073/pnas.37.7.455
[48] Valageas, Patrick, Using the Zeldovich dynamics to test expansion schemes, Astron. Astrophys., 476, 31, 2007 · Zbl 1130.85341 · doi:10.1051/0004-6361:20078065
[49] Bernardeau, Francis; Valageas, Patrick, Eulerian and Lagrangian propagators for the adhesion model (Burgers dynamics), Phys. Rev. D, 81, 2010 · doi:10.1103/PhysRevD.81.043516
[50] R.H. Kraichnan, Dynamics of Nonlinear Stochastic Systems, J. Math. Phys.2 (1961) 124. · Zbl 0268.76038 · doi:10.1063/1.1724206
[51] R.H. Kraichnan, Decay of Isotropic Turbulence in the Direct-Interaction Approximation, Phys. Fluids7 (1964) 1030. · doi:10.1063/1.1711319
[52] C. Runge, Ueber die numerische Auflösung von Differentialgleichungen, Math. Ann.46 (1895) 167. · JFM 26.0341.01 · doi:10.1007/BF01446807
[53] W. Kutta, Beitrag zur näherungsweisen Integration totaler Differentialgleichungen, Z. Math. Phys.46 (1901) 435. · JFM 32.0316.02
[54] J.R. Cash and A.H. Karp, A Variable Order Runge-Kutta Method for Initial Value Problems with Rapidly Varying Right-Hand Sides, ACM Trans. Math. Softw.16 (1990) 201. · Zbl 0900.65234 · doi:10.1145/79505.79507
[55] C. Lubich, Runge-Kutta Theory for Volterra Integrodifferential Equations, Numer. Math.40 (1982) 119. · Zbl 0491.65064 · doi:10.1007/BF01459081
[56] Kim, Juhan; Park, Changbom; Rossi, Graziano; Lee, Sang Min; Gott, J. Richard III, The New Horizon Run Cosmological N-Body Simulations, J. Korean Astron. Soc., 44, 217-234, 2011 · doi:10.5303/JKAS.2011.44.6.217
[57] Komatsu, E., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl., 180, 330-376, 2009 · doi:10.1088/0067-0049/180/2/330
[58] Dubinski, John; Huhan, Kim; Park, Changbom; Humble, Robin, Gotpm: a parallel hybrid particle-mesh treecode, New Astron., 9, 111-126, 2004 · doi:10.1016/j.newast.2003.08.002
[59] Buehlmann, Michael; Hahn, Oliver, Large-Scale Velocity Dispersion and the Cosmic Web, Mon. Not. Roy. Astron. Soc., 487, 228-245, 2019 · doi:10.1093/mnras/stz1243
[60] Ade, P. A. R., Planck 2015 results. Part XIII. Cosmological parameters, Astron. Astrophys., 594, A13, 2016 · doi:10.1051/0004-6361/201525830
[61] Springel, Volker, The Cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc., 364, 1105-1134, 2005 · doi:10.1111/j.1365-2966.2005.09655.x
[62] Blas, Diego; Lesgourgues, Julien; Tram, Thomas, The Cosmic Linear Anisotropy Solving System (CLASS). Part II. Approximation schemes, JCAP, 07, 2011 · doi:10.1088/1475-7516/2011/07/034
[63] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles, McGraw-Hill (1981).
[64] Shandarin, Sergei; Habib, Salman; Heitmann, Katrin, The Cosmic Web, Multi-Stream Flows, and Tessellations, Phys. Rev. D, 85, 2012 · doi:10.1103/PhysRevD.85.083005
[65] Abel, Tom; Hahn, Oliver; Kaehler, Ralf, Tracing the Dark Matter Sheet in Phase Space, Mon. Not. Roy. Astron. Soc., 427, 61-76, 2012 · doi:10.1111/j.1365-2966.2012.21754.x
[66] Jing, Y. P., Correcting for the alias effect when measuring the power spectrum using FFT, Astrophys. J., 620, 559-563, 2005 · doi:10.1086/427087
[67] Jeong, Donghui; Komatsu, Eiichiro, Perturbation Theory Reloaded. Part II. Non-linear Bias, Baryon Acoustic Oscillations and Millennium Simulation In Real Space, Astrophys. J., 691, 569-595, 2009 · doi:10.1088/0004-637X/691/1/569
[68] Valageas, P., Expansion schemes for gravitational clustering: computing two-point and three-point functions, Astron. Astrophys., 484, 79, 2008 · Zbl 1148.85326 · doi:10.1051/0004-6361:20079071
[69] Jelic-Cizmek, Goran; Lepori, Francesca; Adamek, Julian; Durrer, Ruth, The generation of vorticity in cosmological N-body simulations, JCAP, 09, 2018 · doi:10.1088/1475-7516/2018/09/006
[70] Hahn, Oliver; Angulo, Raul E.; Abel, Tom, The Properties of Cosmic Velocity Fields, Mon. Not. Roy. Astron. Soc., 454, 3920-3937, 2015 · doi:10.1093/mnras/stv2179
[71] Durrer, Ruth; Caprini, Chiara, Primordial magnetic fields and causality, JCAP, 11, 2003 · doi:10.1088/1475-7516/2003/11/010
[72] Cusin, Giulia; Tansella, Vittorio; Durrer, Ruth, Vorticity generation in the Universe: A perturbative approach, Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.063527
[73] Hertz, John A.; Roudi, Yasser; Sollich, Peter, Path integral methods for the dynamics of stochastic and disordered systems, J. Phys. A, 50, 2017 · Zbl 1357.82062 · doi:10.1088/1751-8121/50/3/033001
[74] Martin, P. C.; Siggia, E. D.; Rose, H. A., Statistical Dynamics of Classical Systems, Phys. Rev. A, 8, 423-437, 1973 · doi:10.1103/PhysRevA.8.423
[75] C. de Dominicis, Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques, J. Phys. Colloq.37 (1976) C1-247. · doi:10.1051/jphyscol:1976138
[76] H.-K. Janssen, On a Lagrangean for Classical Field Dynamics and Renormalization Group Calculations of Dynamical Critical Properties, Z. Phys. B23 (1976) 377. · doi:10.1007/BF01316547
[77] De Dominicis, C.; Peliti, L., Field-theory renormalization and critical dynamics above T_c: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B, 18, 353-376, 1978 · doi:10.1103/PhysRevB.18.353
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.