×

Renormalization-group flow of the effective action of cosmological large-scale structures. (English) Zbl 1515.83349


MSC:

83F05 Relativistic cosmology

Software:

Mathematica; CLASS

References:

[1] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, 2002 Large scale structure of the universe and cosmological perturbation theory, Phys. Rept.367 1 [astro-ph/0112551] · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[2] M. Kuhlen, M. Vogelsberger and R. Angulo, 2012 Numerical Simulations of the Dark Universe: State of the Art and the Next Decade, Phys. Dark Univ.1 50 [1209.5745] · doi:10.1016/j.dark.2012.10.002
[3] M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu et al., 2014 Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe, Mon. Not. Roy. Astron. Soc.444 1518 [1405.2921] · doi:10.1093/mnras/stu1536
[4] A. Schneider, R. Teyssier, D. Potter, J. Stadel, J. Onions, D.S. Reed et al., 2016 Matter power spectrum and the challenge of percent accuracy J. Cosmol. Astropart. Phys.2016 04 047 [1503.05920]
[5] Euclid Theory Working Group collaboration, L. Amendola et al., 2013 Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel.16 6 [1206.1225] · doi:10.12942/lrr-2013-6
[6] LSST Science, LSST Project collaborations, P.A. Abell et al., LSST Science Book, Version 2.0, [0912.0201]
[7] DESI collaboration, M. Levi et al., The DESI Experiment, a whitepaper for Snowmass 2013, [1308.0847]
[8] K.S. Dawson et al., 2016 The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data, Astron. J.151 44 [1508.04473] · doi:10.3847/0004-6256/151/2/44
[9] F. Bernardeau, The evolution of the large-scale structure of the universe: beyond the linear regime, [1311.2724]
[10] M. Crocce and R. Scoccimarro, 2006 Renormalized cosmological perturbation theory, Phys. Rev. D 73 063519 [astro-ph/0509418] · doi:10.1103/PhysRevD.73.063519
[11] B. Audren and J. Lesgourgues, 2011 Non-linear matter power spectrum from Time Renormalisation Group: efficient computation and comparison with one-loop J. Cosmol. Astropart. Phys.2011 10 037 [1106.2607]
[12] J. Carlson, M. White and N. Padmanabhan, 2009 A critical look at cosmological perturbation theory techniques, Phys. Rev. D 80 043531 [0905.0479] · doi:10.1103/PhysRevD.80.043531
[13] A. Taruya, F. Bernardeau, T. Nishimichi and S. Codis, 2012 RegPT: Direct and fast calculation of regularized cosmological power spectrum at two-loop order, Phys. Rev. D 86 103528 [1208.1191] · doi:10.1103/PhysRevD.86.103528
[14] R. Scoccimarro and J. Frieman, 1996 Loop corrections in nonlinear cosmological perturbation theory, Astrophys. J. Suppl.105 37 [astro-ph/9509047] · doi:10.1086/192306
[15] M. Crocce and R. Scoccimarro, 2006 Memory of initial conditions in gravitational clustering, Phys. Rev. D 73 063520 [astro-ph/0509419] · doi:10.1103/PhysRevD.73.063520
[16] F. Bernardeau, N. Van de Rijt and F. Vernizzi, 2012 Resummed propagators in multi-component cosmic fluids with the eikonal approximation, Phys. Rev. D 85 063509 [1109.3400] · doi:10.1103/PhysRevD.85.063509
[17] D. Blas, M. Garny and T. Konstandin, 2013 On the non-linear scale of cosmological perturbation theory J. Cosmol. Astropart. Phys.2013 09 024 [1304.1546]
[18] M. Peloso and M. Pietroni, 2013 Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure J. Cosmol. Astropart. Phys.2013 05 031 [1302.0223]
[19] A. Kehagias and A. Riotto, 2013 Symmetries and Consistency Relations in the Large Scale Structure of the Universe, Nucl. Phys. B 873 514 [1302.0130] · Zbl 1282.85004 · doi:10.1016/j.nuclphysb.2013.05.009
[20] B. Jain and E. Bertschinger, 1996 Selfsimilar evolution of cosmological density fluctuations, Astrophys. J.456 43 [astro-ph/9503025] · doi:10.1086/176625
[21] M. Crocce and R. Scoccimarro, 2008 Nonlinear Evolution of Baryon Acoustic Oscillations, Phys. Rev. D 77 023533 [0704.2783] · doi:10.1103/PhysRevD.77.023533
[22] R.E. Smith, R. Scoccimarro and R.K. Sheth, 2008 Eppur Si Muove: On The Motion of the Acoustic Peak in the Correlation Function, Phys. Rev. D 77 043525 [astro-ph/0703620] · doi:10.1103/PhysRevD.77.043525
[23] B.D. Sherwin and M. Zaldarriaga, 2012 The Shift of the Baryon Acoustic Oscillation Scale: A Simple Physical Picture, Phys. Rev. D 85 103523 [1202.3998] · doi:10.1103/PhysRevD.85.103523
[24] L. Senatore and M. Zaldarriaga, 2015 The IR-resummed Effective Field Theory of Large Scale Structures J. Cosmol. Astropart. Phys.2015 02 013 [1404.5954]
[25] T. Baldauf, M. Mirbabayi, M. Simonović and M. Zaldarriaga, 2015 Equivalence Principle and the Baryon Acoustic Peak, Phys. Rev. D 92 043514 [1504.04366] · doi:10.1103/PhysRevD.92.043514
[26] M. Zaldarriaga and M. Mirbabayi, Lagrangian Formulation of the Eulerian-EFT, [1511.01889]
[27] D. Blas, M. Garny, M.M. Ivanov and S. Sibiryakov, 2016 Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism J. Cosmol. Astropart. Phys.2016 07 052 [1512.05807]
[28] D. Blas, M. Garny, M.M. Ivanov and S. Sibiryakov, 2016 Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation J. Cosmol. Astropart. Phys.2016 07 028 [1605.02149]
[29] D. Blas, M. Garny and T. Konstandin, 2014 Cosmological perturbation theory at three-loop order J. Cosmol. Astropart. Phys.2014 01 010 [1309.3308]
[30] J.S. Bagla and T. Padmanabhan, 1997 Critical index and fixed point in the transfer of power in nonlinear gravitational clustering, Mon. Not. Roy. Astron. Soc.286 1023 [astro-ph/9605202] · doi:10.1093/mnras/286.4.1023
[31] T. Nishimichi, F. Bernardeau and A. Taruya, 2016 Response function of the large-scale structure of the universe to the small scale inhomogeneities, Phys. Lett. B 762 247 [1411.2970] · doi:10.1016/j.physletb.2016.09.035
[32] S. Pueblas and R. Scoccimarro, 2009 Generation of Vorticity and Velocity Dispersion by Orbit Crossing, Phys. Rev. D 80 043504 [0809.4606] · doi:10.1103/PhysRevD.80.043504
[33] P.J.E. Peebles, 1980 The Large-scale Structure of the Universe, Princeton University Press · Zbl 1422.85005
[34] M. Garny, T. Konstandin, R.A. Porto and L. Sagunski, 2015 On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence J. Cosmol. Astropart. Phys.2015 11 032 [1508.06306]
[35] M. Pietroni, G. Mangano, N. Saviano and M. Viel, 2012 Coarse-Grained Cosmological Perturbation Theory J. Cosmol. Astropart. Phys.2012 01 019 [1108.5203]
[36] A. Manzotti, M. Peloso, M. Pietroni, M. Viel and F. Villaescusa-Navarro, 2014 A coarse grained perturbation theory for the Large Scale Structure, with cosmology and time independence in the UV J. Cosmol. Astropart. Phys.2014 09 047 [1407.1342]
[37] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, 2012 Cosmological Non-Linearities as an Effective Fluid J. Cosmol. Astropart. Phys.2012 07 051 [1004.2488]
[38] J.J.M. Carrasco, M.P. Hertzberg and L. Senatore, 2012 The Effective Field Theory of Cosmological Large Scale Structures J. High Energy Phys. JHEP09(2012)082 [1206.2926] · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[39] R.A. Porto, L. Senatore and M. Zaldarriaga, 2014 The Lagrangian-space Effective Field Theory of Large Scale Structures J. Cosmol. Astropart. Phys.2014 05 022 [1311.2168]
[40] S. Foreman, H. Perrier and L. Senatore, 2016 Precision Comparison of the Power Spectrum in the EFTofLSS with Simulations J. Cosmol. Astropart. Phys.2016 05 027 [1507.05326]
[41] T. Baldauf, L. Mercolli and M. Zaldarriaga, 2015 Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound, Phys. Rev. D 92 123007 [1507.02256] · doi:10.1103/PhysRevD.92.123007
[42] V. Assassi, D. Baumann, E. Pajer, Y. Welling and D. van der Woude, 2015 Effective theory of large-scale structure with primordial non-Gaussianity J. Cosmol. Astropart. Phys.2015 11 024 [1505.06668]
[43] A.A. Abolhasani, M. Mirbabayi and E. Pajer, 2016 Systematic Renormalization of the Effective Theory of Large Scale Structure J. Cosmol. Astropart. Phys.2016 05 063 [1509.07886]
[44] F. Führer and G. Rigopoulos, 2016 Renormalizing a Viscous Fluid Model for Large Scale Structure Formation J. Cosmol. Astropart. Phys.2016 02 032 [1509.03073]
[45] S. Matarrese and M. Pietroni, 2007 Resumming Cosmic Perturbations J. Cosmol. Astropart. Phys.2007 06 026 [astro-ph/0703563]
[46] J. Zinn-Justin, 1989 Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford
[47] P. Valageas, 2007 Large-N expansions applied to gravitational clustering, Astron. Astrophys.465 725 [astro-ph/0611849] · doi:10.1051/0004-6361:20066832
[48] P. McDonald, 2007 Dark matter clustering: a simple renormalization group approach, Phys. Rev. D 75 043514 [astro-ph/0606028] · doi:10.1103/PhysRevD.75.043514
[49] M. Pietroni, 2008 Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations J. Cosmol. Astropart. Phys.2008 10 036 [0806.0971]
[50] D. Blas, S. Floerchinger, M. Garny, N. Tetradis and U.A. Wiedemann, 2015 Large scale structure from viscous dark matter J. Cosmol. Astropart. Phys.2015 11 049 [1507.06665]
[51] J. Polchinski, 1984 Renormalization and Effective Lagrangians, Nucl. Phys. B 231 269 · doi:10.1016/0550-3213(84)90287-6
[52] C. Wetterich, 1993 Exact evolution equation for the effective potential, Phys. Lett. B 301 90 · doi:10.1016/0370-2693(93)90726-X
[53] K. Aoki, 2000 Introduction to the nonperturbative renormalization group and its recent applications, Int. J. Mod. Phys. B 14 1249 · Zbl 1219.81199 · doi:10.1016/S0217-9792(00)00092-3
[54] C. Bagnuls and C. Bervillier, 2001 Exact renormalization group equations. An Introductory review, Phys. Rept.348 91 [hep-th/0002034] · Zbl 0969.81596 · doi:10.1016/S0370-1573(00)00137-X
[55] J. Berges, N. Tetradis and C. Wetterich, 2002 Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept.363 223 [hep-ph/0005122] · Zbl 0994.81077 · doi:10.1016/S0370-1573(01)00098-9
[56] J. Polonyi, 2003 Lectures on the functional renormalization group method, Central Eur. J. Phys.1 1 [hep-th/0110026] · doi:10.2478/BF02475552
[57] J.M. Pawlowski, 2007 Aspects of the functional renormalisation group, Annals Phys.322 2831 [hep-th/0512261] · Zbl 1132.81041 · doi:10.1016/j.aop.2007.01.007
[58] H. Gies, 2012 Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys.852 287 [hep-ph/0611146] · Zbl 1257.81058 · doi:10.1007/978-3-642-27320-9_6
[59] B. Delamotte, 2012 An Introduction to the nonperturbative renormalization group, Lect. Notes Phys.852 49 [cond-mat/0702365] · Zbl 1257.81057 · doi:10.1007/978-3-642-27320-9_2
[60] O.J. Rosten, 2012 Fundamentals of the Exact Renormalization Group, Phys. Rept.511 177 [1003.1366] · doi:10.1016/j.physrep.2011.12.003
[61] D.F. Litim, 2011 Renormalisation group and the Planck scale, Phil. Trans. Roy. Soc. Lond. A 369 2759 [1102.4624] · Zbl 1228.82028 · doi:10.1098/rsta.2011.0103
[62] M. Reuter and F. Saueressig, 2012 Quantum Einstein Gravity, New J. Phys.14 055022 [1202.2274] · Zbl 1448.83010 · doi:10.1088/1367-2630/14/5/055022
[63] L.P. Kadanoff and P.C. Matrin, 1963 Hydrodynamic Equations and Correlation Functions Ann. Phys. (N.Y.)24 419, reprinted in Ann. Phys. (N.Y.)281 2000 800 · Zbl 0131.45002 · doi:10.1016/0003-4916(63)90078-2
[64] P.C. Hohenberg and B.I. Halperin, 1977 Theory of Dynamic Critical Phenomena, Rev. Mod. Phys.49 435 · doi:10.1103/RevModPhys.49.435
[65] E. Calzetta and B.L. Hu, 1988 Nonequilibrium Quantum Fields: Closed Time Path Effective Action, Wigner Function and Boltzmann Equation, Phys. Rev. D 37 2878 · doi:10.1103/PhysRevD.37.2878
[66] S. Floerchinger, 2016 Variational principle for theories with dissipation from analytic continuation J. High Energy Phys. JHEP09(2016)099 [1603.07148] · Zbl 1390.81382 · doi:10.1007/JHEP09(2016)099
[67] P. Creminelli, J. Noreña, M. Simonović and F. Vernizzi, 2013 Single-Field Consistency Relations of Large Scale Structure J. Cosmol. Astropart. Phys.2013 12 025 [1309.3557]
[68] Wolfram Research Inc., 2016 Mathematica, Version 10.4, Champaign, IL
[69] B. Audren, J. Lesgourgues, S. Bird, M.G. Haehnelt and M. Viel, 2013 Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors J. Cosmol. Astropart. Phys.2013 01 026 [1210.2194]
[70] T. Baldauf, M. Mirbabayi, M. Simonović and M. Zaldarriaga, LSS constraints with controlled theoretical uncertainties, [1602.00674]
[71] L. Mercolli and E. Pajer, 2014 On the velocity in the Effective Field Theory of Large Scale Structures J. Cosmol. Astropart. Phys.2014 03 006 [1307.3220]
[72] M.H. Goroff, B. Grinstein, S.J. Rey and M.B. Wise, 1986 Coupling of Modes of Cosmological Mass Density Fluctuations, Astrophys. J.311 6 · doi:10.1086/164749
[73] J. Kim, C. Park, G. Rossi, S.M. Lee and J.R. Gott III, 2011 The New Horizon Run Cosmological N-Body Simulations, J. Korean Astron. Soc.44 217 [1112.1754] · doi:10.5303/JKAS.2011.44.6.217
[74] D. Blas, J. Lesgourgues and T. Tram, 2011 The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes J. Cosmol. Astropart. Phys.2011 07 034 [1104.2933]
[75] E. Jennings, 2012 An improved model for the nonlinear velocity power spectrum, Mon. Not. Roy. Astron. Soc.427 L25 [1207.1439] · doi:10.1111/j.1745-3933.2012.01338.x
[76] O. Hahn, R.E. Angulo and T. Abel, 2015 The Properties of Cosmic Velocity Fields, Mon. Not. Roy. Astron. Soc.454 3920 [1404.2280] · doi:10.1093/mnras/stv2179
[77] R. Scoccimarro, 2004 Redshift-space distortions, pairwise velocities and nonlinearities, Phys. Rev. D 70 083007 [astro-ph/0407214] · doi:10.1103/PhysRevD.70.083007
[78] J.J.M. Carrasco, S. Foreman, D. Green and L. Senatore, 2014 The Effective Field Theory of Large Scale Structures at Two Loops J. Cosmol. Astropart. Phys.2014 07 057 [1310.0464]
[79] M. Kunz, S. Nesseris and I. Sawicki, 2016 Constraints on dark-matter properties from large-scale structure, Phys. Rev. D 94 023510 [1604.05701] · doi:10.1103/PhysRevD.94.023510
[80] M. Kopp, C. Skordis and D.B. Thomas, 2016 Extensive investigation of the generalized dark matter model, Phys. Rev. D 94 043512 [1605.00649] · doi:10.1103/PhysRevD.94.043512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.