×

The dark matter bispectrum from effective viscosity and one-particle irreducible vertices. (English) Zbl 1541.83153

Summary: Dark matter evolution during the process of cosmological structure formation can be described in terms of a one-particle irreducible effective action at a characteristic scale \(k_m\) and a loop expansion below this scale, based on the effective propagators and vertices. We calculate the form of the effective vertices and compute the bispectrum of density perturbations within a one-loop approximation. We find that the effective vertices play a subdominant role as compared to the effective viscosity and sound velocity that modify the (inverse) propagators. For the bispectrum we reproduce the results of standard perturbation theory in the range where it is applicable, and find a slightly improved agreement with \(N\)-body simulations at larger wavenumbers.

MSC:

83F05 Relativistic cosmology
83C56 Dark matter and dark energy

Software:

CLASS

References:

[1] Euclid Theory Working Group collaboration, 2013 Cosmology and fundamental physics with the Euclid satellite, https://doi.org/10.12942/lrr-2013-6 Living Rev. Rel.16 6 [1206.1225] · doi:10.12942/lrr-2013-6
[2] LSST Science and LSST Project collaborations, LSST science book, version 2.0, [0912.0201]
[3] DESI collaboration, The DESI experiment, a whitepaper for Snowmass 2013, [1308.0847]
[4] K.S. Dawson et al., 2016 The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: overview and early data, https://doi.org/10.3847/0004-6256/151/2/44 Astron. J.151 44 [1508.04473] · doi:10.3847/0004-6256/151/2/44
[5] M. Ata et al., 2018 The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2, https://doi.org/10.1093/mnras/stx2630 Mon. Not. Roy. Astron. Soc.473 4773 [1705.06373] · doi:10.1093/mnras/stx2630
[6] M. Kuhlen, M. Vogelsberger and R. Angulo, 2012 Numerical simulations of the dark universe: state of the art and the next decade, https://doi.org/10.1016/j.dark.2012.10.002 Phys. Dark Univ.1 50 [1209.5745] · doi:10.1016/j.dark.2012.10.002
[7] M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu et al., 2014 Introducing the Illustris project: simulating the coevolution of dark and visible matter in the universe, https://doi.org/10.1093/mnras/stu1536 Mon. Not. Roy. Astron. Soc.444 1518 [1405.2921] · doi:10.1093/mnras/stu1536
[8] A. Schneider, R. Teyssier, D. Potter, J. Stadel, J. Onions, D.S. Reed et al., 2016 Matter power spectrum and the challenge of percent accuracy J. Cosmol. Astropart. Phys.2016 04 047 [1503.05920]
[9] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, 2002 Large scale structure of the universe and cosmological perturbation theory, https://doi.org/10.1016/S0370-1573(02)00135-7 Phys. Rept.367 1 [astro-ph/0112551] · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[10] F. Bernardeau, 2015 The evolution of the large-scale structure of the universe: beyond the linear regime, in Proceedings \(, 100^{th}\) Les Houches Summer School: post-Planck cosmology, Les Houches, France, 8 July-2 August 2013, https://doi.org/10.1093/acprof:oso/9780198728856.003.0002 Oxford University Press, Oxford, U.K. , pg. 17 [1311.2724] · Zbl 1326.83005 · doi:10.1093/acprof:oso/9780198728856.003.0002
[11] M. Crocce and R. Scoccimarro, 2006 Renormalized cosmological perturbation theory, https://doi.org/10.1103/PhysRevD.73.063519 Phys. Rev. D 73 063519 [astro-ph/0509418] · doi:10.1103/PhysRevD.73.063519
[12] B. Audren and J. Lesgourgues, 2011 Non-linear matter power spectrum from time renormalisation group: efficient computation and comparison with one-loop J. Cosmol. Astropart. Phys.2011 10 037 [1106.2607]
[13] J. Carlson, M. White and N. Padmanabhan, 2009 A critical look at cosmological perturbation theory techniques, https://doi.org/10.1103/PhysRevD.80.043531 Phys. Rev. D 80 043531 [0905.0479] · doi:10.1103/PhysRevD.80.043531
[14] A. Taruya, F. Bernardeau, T. Nishimichi and S. Codis, 2012 RegPT: direct and fast calculation of regularized cosmological power spectrum at two-loop order, https://doi.org/10.1103/PhysRevD.86.103528 Phys. Rev. D 86 103528 [1208.1191] · doi:10.1103/PhysRevD.86.103528
[15] R. Scoccimarro and J. Frieman, 1996 Loop corrections in nonlinear cosmological perturbation theory, https://doi.org/10.1086/192306 Astrophys. J. Suppl.105 37 [astro-ph/9509047] · doi:10.1086/192306
[16] M. Crocce and R. Scoccimarro, 2006 Memory of initial conditions in gravitational clustering, https://doi.org/10.1103/PhysRevD.73.063520 Phys. Rev. D 73 063520 [astro-ph/0509419] · doi:10.1103/PhysRevD.73.063520
[17] F. Bernardeau, N. Van de Rijt and F. Vernizzi, 2012 Resummed propagators in multi-component cosmic fluids with the eikonal approximation, https://doi.org/10.1103/PhysRevD.85.063509 Phys. Rev. D 85 063509 [1109.3400] · doi:10.1103/PhysRevD.85.063509
[18] D. Blas, M. Garny and T. Konstandin, 2013 On the non-linear scale of cosmological perturbation theory J. Cosmol. Astropart. Phys.2013 09 024 [1304.1546]
[19] M. Crocce and R. Scoccimarro, 2008 Nonlinear evolution of baryon acoustic oscillations, https://doi.org/10.1103/PhysRevD.77.023533 Phys. Rev. D 77 023533 [0704.2783] · doi:10.1103/PhysRevD.77.023533
[20] R.E. Smith, R. Scoccimarro and R.K. Sheth, 2008 Eppur si muove: on the motion of the acoustic peak in the correlation function, https://doi.org/10.1103/PhysRevD.77.043525 Phys. Rev. D 77 043525 [astro-ph/0703620] · doi:10.1103/PhysRevD.77.043525
[21] B.D. Sherwin and M. Zaldarriaga, 2012 The shift of the baryon acoustic oscillation scale: a simple physical picture, https://doi.org/10.1103/PhysRevD.85.103523 Phys. Rev. D 85 103523 [1202.3998] · doi:10.1103/PhysRevD.85.103523
[22] L. Senatore and M. Zaldarriaga, 2015 The IR-resummed effective field theory of large scale structures J. Cosmol. Astropart. Phys.2015 02 013 [1404.5954]
[23] D. Blas, M. Garny, M.M. Ivanov and S. Sibiryakov, 2016 Time-sliced perturbation theory for large scale structure I: general formalism J. Cosmol. Astropart. Phys.2016 07 052 [1512.05807]
[24] D. Blas, M. Garny, M.M. Ivanov and S. Sibiryakov, 2016 Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation J. Cosmol. Astropart. Phys.2016 07 028 [1605.02149]
[25] D. Blas, M. Garny and T. Konstandin, 2014 Cosmological perturbation theory at three-loop order J. Cosmol. Astropart. Phys.2014 01 010 [1309.3308]
[26] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, 2012 Cosmological non-linearities as an effective fluid J. Cosmol. Astropart. Phys.2012 07 051 [1004.2488]
[27] J.J.M. Carrasco, M.P. Hertzberg and L. Senatore, 2012 The effective field theory of cosmological large scale structures J. High Energy Phys. JHEP09(2012)082 [1206.2926] · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[28] R.A. Porto, L. Senatore and M. Zaldarriaga, 2014 The Lagrangian-space effective field theory of large scale structures J. Cosmol. Astropart. Phys.2014 05 022 [1311.2168]
[29] T. Baldauf, L. Mercolli, M. Mirbabayi and E. Pajer, 2015 The bispectrum in the effective field theory of large scale structure J. Cosmol. Astropart. Phys.2015 05 007 [1406.4135]
[30] R.E. Angulo, S. Foreman, M. Schmittfull and L. Senatore, 2015 The one-loop matter bispectrum in the effective field theory of large scale structures J. Cosmol. Astropart. Phys.2015 10 039 [1406.4143]
[31] S. Foreman, H. Perrier and L. Senatore, 2016 Precision comparison of the power spectrum in the EFTofLSS with simulations J. Cosmol. Astropart. Phys.2016 05 027 [1507.05326]
[32] T. Baldauf, L. Mercolli and M. Zaldarriaga, 2015 Effective field theory of large scale structure at two loops: the apparent scale dependence of the speed of sound, https://doi.org/10.1103/PhysRevD.92.123007 Phys. Rev. D 92 123007 [1507.02256] · doi:10.1103/PhysRevD.92.123007
[33] V. Assassi, D. Baumann, E. Pajer, Y. Welling and D. van der Woude, 2015 Effective theory of large-scale structure with primordial non-Gaussianity J. Cosmol. Astropart. Phys.2015 11 024 [1505.06668]
[34] A.A. Abolhasani, M. Mirbabayi and E. Pajer, 2016 Systematic renormalization of the effective theory of large scale structure J. Cosmol. Astropart. Phys.2016 05 063 [1509.07886]
[35] F. Führer and G. Rigopoulos, 2016 Renormalizing a viscous fluid model for large scale structure formation J. Cosmol. Astropart. Phys.2016 02 032 [1509.03073]
[36] A. Chudaykin and M.M. Ivanov, Measuring neutrino masses with large-scale structure: Euclid forecast with controlled theoretical error, [1907.06666]
[37] P.C. Martin, E.D. Siggia and H.A. Rose, 1973 Statistical dynamics of classical systems, https://doi.org/10.1103/PhysRevA.8.423 Phys. Rev. A 8 423 · doi:10.1103/PhysRevA.8.423
[38] S. Matarrese and M. Pietroni, 2007 Resumming cosmic perturbations J. Cosmol. Astropart. Phys.2007 06 026 [astro-ph/0703563]
[39] D. Blas, S. Floerchinger, M. Garny, N. Tetradis and U.A. Wiedemann, 2015 Large scale structure from viscous dark matter J. Cosmol. Astropart. Phys.2015 11 049 [1507.06665]
[40] S. Floerchinger, M. Garny, N. Tetradis and U.A. Wiedemann, 2017 Renormalization-group flow of the effective action of cosmological large-scale structures J. Cosmol. Astropart. Phys.2017 01 048 [1607.03453] · Zbl 1515.83349
[41] J. Berges, N. Tetradis and C. Wetterich, 2002 Nonperturbative renormalization flow in quantum field theory and statistical physics, https://doi.org/10.1016/S0370-1573(01)00098-9 Phys. Rept.363 223 [hep-ph/0005122] · Zbl 0994.81077 · doi:10.1016/S0370-1573(01)00098-9
[42] M. Pietroni, G. Mangano, N. Saviano and M. Viel, 2012 Coarse-grained cosmological perturbation theory J. Cosmol. Astropart. Phys.2012 01 019 [1108.5203]
[43] A. Manzotti, M. Peloso, M. Pietroni, M. Viel and F. Villaescusa-Navarro, 2014 A coarse grained perturbation theory for the large scale structure, with cosmology and time independence in the UV J. Cosmol. Astropart. Phys.2014 09 047 [1407.1342]
[44] M.H. Goroff, B. Grinstein, S.J. Rey and M.B. Wise, 1986 Coupling of modes of cosmological mass density fluctuations, https://doi.org/10.1086/164749 Astrophys. J.311 6 · doi:10.1086/164749
[45] D. Blas, J. Lesgourgues and T. Tram, 2011 The Cosmic Linear Anisotropy Solving System (CLASS) II: approximation schemes J. Cosmol. Astropart. Phys.2011 07 034 [1104.2933]
[46] P. McDonald, 2011 How to generate a significant effective temperature for cold dark matter, from first principles J. Cosmol. Astropart. Phys.2011 04 032 [0910.1002]
[47] A. Erschfeld and S. Floerchinger, 2019 Evolution of dark matter velocity dispersion J. Cosmol. Astropart. Phys.2019 06 039 [1812.06891] · Zbl 1541.83147
[48] A. Lazanu and M. Liguori, 2018 The two and three-loop matter bispectrum in perturbation theories J. Cosmol. Astropart. Phys.2018 04 055 [1803.03184] · Zbl 1536.83186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.