×

Existence of the heat flow with sign-changing prescribed function. (English) Zbl 1543.58014

Let \((\Sigma, g)\) be a closed Riemann surface, \( u_0 = u(\cdot, 0) \in C^{2+\beta}(\Sigma) \) with \( \beta \in (0,1) \), and \( h \) be a smooth function that changes sign and satisfies \( \int_{\Sigma} h e^{u_0} \, dv_g \neq 0 \).
In this paper, the authors investigate the following mean-field type flow: \[ \left\{ \begin{array}{l} \frac{\partial}{\partial t} e^u + \Delta_g u = \alpha(u - \bar{u}) + 8 \pi \left(\frac{h e^u}{\int_{\Sigma} h e^u \, dv_g} - 1\right), \\ u(\cdot, 0) = u_0, \end{array} \right. \] where \( \bar{u} = \frac{1}{|\Sigma|} \int_{\Sigma} u \, dv_g \), \( 0 \leq \alpha < \lambda_1(\Sigma) \), and \( \lambda_1(\Sigma) \) is the first eigenvalue of the Laplace-Beltrami operator \( \Delta_g \).
This equation can be recognized as a gradient flow of the functional \( J_{8 \pi}(u) \): \[ J_{8 \pi}(u) = \frac{1}{2} \int_{\Sigma} |\nabla_g u|^2 \, dv_g - \frac{\alpha}{2} \int_{\Sigma} (u - \bar{u})^2 \, dv_g + 8 \pi \bar{u} - 8 \pi \log \left|\int_{\Sigma} h e^u \, dv_g\right|. \] The authors establish the following theorem:
{Theorem.} Suppose \( (\Sigma, g) \) is a closed Riemann surface, \( h \in C^{\infty}(\Sigma) \) with \( h \not \equiv 0 \), and \( u_0 \in C^{2+\beta}(\Sigma) \) with \( \beta \in (0,1) \), satisfying \( \int_{\Sigma} h e^{u_0} \, dv_g \neq 0 \). Then, there exists a unique global solution \( u \) to the above mean-field flow equation. Moreover, if \( \Delta_g u = \alpha(u - \bar{u}) + 8 \pi \left(\frac{h e^u}{\int_{\Sigma} h e^u \, dv_g} - 1\right) \) has no solution, then for all \( t \geq 0 \), \[ J_{8 \pi}(u(\cdot, t)) \geq -4 \pi \max_{x \in \Sigma} \left( 2 \log (\pi |h(x)|) + A_x \right) - 8 \pi, \] where \( A_x \) is a constant associated with the Green function \( G_x(y) \), satisfying \[ \left\{ \begin{array}{l} \Delta_g G_x - \alpha G_x = 8 \pi \delta_x - 8 \pi, \\ \int_{\Sigma} G_x \, dv_g = 0. \end{array} \right. \]
More explicitly, the authors show in Lemma 6 that \(G_x\) satisfies \[ G_{x}=-4 \log r+A_{x}+O(r) \text {, where } A_{x} \text { is the constant above. } \] The authors use blow-up analysis to derive their results, and overcome difficulties arising from the term \( \alpha(u - \bar{u}) \).

MSC:

58J35 Heat and other parabolic equation methods for PDEs on manifolds
58J05 Elliptic equations on manifolds, general theory
35J60 Nonlinear elliptic equations
53C20 Global Riemannian geometry, including pinching
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
Full Text: DOI

References:

[1] Brezis, H.; Merle, E., Uniform estimates and blow-up behavior for solutions of \(- \operatorname{\Delta} u = V(x) e^u\) in two dimensions, Commun. Partial Differ. Equ., 16, 1223-1253, 1991 · Zbl 0746.35006
[2] Caffarelli, L.; Yang, Y., Vortex condensation in the Chern-Simons-Higgs model: an existence theorem, Commun. Math. Phys., 168, 321-336, 1995 · Zbl 0846.58063
[3] Castéras, J., A mean field type flow part I: compactness of solutions to a perturbed mean field type equation, Calc. Var. Partial Differ. Equ., 53, 221-246, 2015 · Zbl 1326.35031
[4] Castéras, J., A mean field type flow II: existence and convergence, Pac. J. Math., 276, 321-345, 2015 · Zbl 1331.53097
[5] Chang, A.; Yang, P., Prescribing Gaussian curvature on \(S^2\), Acta Math., 159, 215-259, 1987 · Zbl 0636.53053
[6] Chang, A.; Yang, P., Conformal deformation of metrics on \(S^2\), J. Differ. Geom., 27, 259-296, 1988 · Zbl 0649.53022
[7] Chang, K.; Liu, J., On Nirenberg’s problem, Int. J. Math., 4, 35-58, 1993 · Zbl 0786.58010
[8] Chen, W.; Ding, W., Scalar curvatures on \(S^2\), Trans. Am. Math. Soc., 303, 365-382, 1987 · Zbl 0635.35026
[9] Chen, W.; Ding, W., A problem concerning the scalar curvature on \(S^2\), Kexue Tongbao (English Ed.), 33, 533-537, 1988 · Zbl 0676.53048
[10] Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622, 1991 · Zbl 0768.35025
[11] Chen, C.; Lin, C., Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., 55, 728-771, 2002 · Zbl 1040.53046
[12] Chen, C.; Lin, C., Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., 56, 1667-1727, 2003 · Zbl 1032.58010
[13] Chen, X.; Li, M.; Li, Z.; Xu, X., On Gaussian curvature flow, J. Differ. Equ., 294, 178-250, 2021 · Zbl 1479.58023
[14] Dávila, J.; del Pino, M.; Wei, J., Singularity formation for the two-dimensional harmonic map flow into \(S^2\), Invent. Math., 219, 345-466, 2020 · Zbl 1445.35082
[15] Ding, W.; Jost, J.; Li, J.; Wang, G., Existence results for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16, 653-666, 1999 · Zbl 0937.35055
[16] Ding, W.; Jost, J.; Li, J.; Wang, G., An analysis of the two-vortex case in the Chern-Simons-Higgs model, Calc. Var. Partial Differ. Equ., 7, 87-97, 1998 · Zbl 0928.58021
[17] Ding, W.; Jost, J.; Li, J.; Wang, G., Multiplicity results for the two-vortex Chern-Simons-Higgs model on the two-sphere, Comment. Math. Helv., 74, 118-142, 1999 · Zbl 0913.53032
[18] Ding, W.; Jost, J.; Li, J.; Wang, G., The differential equation \(\operatorname{\Delta} u = 8 \pi - 8 \pi h e^u\) on a compact Riemann surface, Asian J. Math., 1, 230-248, 1997 · Zbl 0955.58010
[19] Djadli, Z., Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10, 205-220, 2008 · Zbl 1151.53035
[20] Hong, C., A best constant and the Gaussian curvature, Proc. Am. Math. Soc., 97, 737-747, 1986 · Zbl 0603.58056
[21] Lamm, T.; Robert, F.; Struwe, M., The heat flow with a critical exponential nonlinearity, J. Funct. Anal., 257, 2951-2998, 2009 · Zbl 1387.35371
[22] Li, M.; Xu, X., A flow approach to mean field equation, Calc. Var. Partial Differ. Equ., 61, 2022, 18 pp. · Zbl 1542.58010
[23] Li, J.; Zhu, C., The convergence of the mean field type flow at a critical case, Calc. Var. Partial Differ. Equ., 58, 60-78, 2019 · Zbl 1415.58014
[24] Lin, C., Topological degree for mean field equations on \(S^2\), Duke Math. J., 104, 501-536, 2000 · Zbl 0964.35038
[25] Lin, L.; Sesum, N., Blow-up of the mean curvature at the first singular time of the mean curvature flow, Calc. Var. Partial Differ. Equ., 55, 2016, 16 pp. · Zbl 1343.53064
[26] Liu, Q.; Wang, M., The equation \(\operatorname{\Delta} u + \operatorname{\nabla} w \operatorname{\nabla} u = 8 \pi c(1 - h e^u)\) on a Riemann surface, J. Partial Differ. Equ., 25, 335-355, 2012 · Zbl 1289.58012
[27] Malchiodi, A., Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21, 277-294, 2008 · Zbl 1144.35372
[28] Mazzeo, R.; Rubinstein, Y.; Sesum, N., Ricci flow on surfaces with conic singularities, Anal. PDE, 8, 839-882, 2015 · Zbl 1322.53070
[29] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 1077-1091, 1971 · Zbl 0203.43701
[30] Moser, J., On a nonlinear problem in differential geometry, dynamical systems, (Proc. Sympos.. Proc. Sympos., Univ. Bahia, Salvador, 1971, 1973, Academic Press: Academic Press New York), 273-280 · Zbl 0275.53027
[31] Nolasco, M.; Tarantello, G., Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differ. Equ., 9, 31-94, 1999 · Zbl 0951.58030
[32] Nolasco, M.; Tarantello, G., On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145, 161-195, 1998 · Zbl 0980.46022
[33] Kazdan, J.; Warner, F., Curvature functions for compact 2-manifolds, Ann. Math., 99, 14-47, 1974 · Zbl 0273.53034
[34] Struwe, M.; Tarantello, G., On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 1, 109-121, 1998 · Zbl 0912.58046
[35] Sun, L.; Wang, Y.; Yang, Y., Existence results for a generalized mean field equation on a closed Riemann surface
[36] Sun, L.; Zhu, J., Global existence and convergence of a flow to Kazdan-Warner equation with nonnegative prescribed function, Calc. Var. Partial Differ. Equ., 60, 2021, 26 pp. · Zbl 1458.35437
[37] Sun, L.; Zhu, J., Existence of Kazdan-Warner equation with sign-changing prescribed function · Zbl 1533.35076
[38] Tarantello, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37, 3769-3796, 1996 · Zbl 0863.58081
[39] Wang, Y.; Yang, Y., Finding critical points of the Trudinger-Moser functional through the heat flow, Proc. Am. Math. Soc., 150, 2475-2485, 2022 · Zbl 1495.46026
[40] Wang, Y.; Yang, Y., A heat flow for the critical Trudinger-Moser functional on a closed Riemann surface, Ann. Glob. Anal. Geom., 61, 777-797, 2022 · Zbl 1493.58008
[41] Wang, Y.; Yang, Y., A mean field type flow with sign-changing prescribed function on a symmetric Riemann surface, J. Funct. Anal., 282, 2022, 31 pp. · Zbl 1485.58021
[42] Yang, Y., Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two, J. Differ. Equ., 258, 3161-3193, 2015 · Zbl 1339.46041
[43] Yang, Y.; Zhu, X., A remark on a result of Ding-Jost-Li-Wang, Proc. Am. Math. Soc., 145, 3953-3959, 2017 · Zbl 1369.58010
[44] Yang, Y.; Zhu, X., Existence of solutions to a class of Kazdan-Warner equations on compact Riemannian surface, Sci. China Math., 61, 1109-1128, 2018 · Zbl 1394.58007
[45] Yang, Y.; Zhu, X., Mean field equations on a closed Riemannian surface with the action of an isometric group, Int. J. Math., 31, 2020, 26 pp. · Zbl 1451.58009
[46] Zhu, X., A generalized Trudinger-Moser inequality on a compact Riemannian surface, Nonlinear Anal., 169, 38-58, 2018 · Zbl 1384.58016
[47] Zhu, X., A singular Kazdan-Warner problem on a compact Riemann surface, Calc. Var. Partial Differ. Equ., 62, 2023, 17 pp. · Zbl 1516.30054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.