×

A mean field type flow with sign-changing prescribed function on a symmetric Riemann surface. (English) Zbl 1485.58021

Summary: Let \((\Sigma, g)\) be a closed Riemann surface, and \(\text{G} = \{ \sigma_1, \cdots, \sigma_N \}\) be a finite isometric group acting on it. Denote a positive integer \(\ell = \min_{x \in \Sigma} I(x)\), where \(I(x)\) is the number of all distinct points of the set \(\{ \sigma_1(x), \cdots, \sigma_N(x) \} \). In this paper, we consider the following G-invariant mean field type flow \[ \begin{cases} \displaystyle\frac{ \partial}{ \partial t} e^u = \Delta_g u + 8 \pi \ell \left( \frac{ f e^u}{ \int_{\Sigma} f e^u d v_g} - \frac{ 1}{ |\Sigma|} \right) \\ u (\cdot, 0) = u_0, \end{cases} \] where \(u_0\) belongs to \(C^{2 + \alpha}(\Sigma)\) for some \(\alpha \in(0, 1), f\) is a sign-changing smooth function such that \(\int_{\Sigma} f e^{u_0} d v_g \neq 0\), both \(u_0\) and \(f\) are G-invariant, and \(|\Sigma|\) denotes the area of \((\Sigma, g)\). Such kind of flow was originally proposed by J.-B. Castéras [Pac. J. Math. 276, No. 2, 321–345 (2015; Zbl 1331.53097)]. Through a priori estimates, we prove that the flow \(u(x, t)\) exists for all time \(t \in [0, \infty)\). Moreover, by employing blow-up procedure, we obtain that under certain geometric conditions, \(u(x, t)\) converges to \(u(x)\) in \(H^2(\Sigma)\) as \(t \to \infty \), where \(u(x)\) is a solution of the mean field equation \[ \displaystyle-\Delta_g u = 8 \pi \ell \left(\frac{ f e^u}{ \int_{\Sigma} f e^u d v_g} - \frac{1}{|\Sigma|}\right). \] This generalizes recent results of J. Li and C. Zhu [Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 60, 18 p. (2019; Zbl 1415.58014)] and L. Sun and J. Zhu [Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 42, 26 p. (2021; Zbl 1458.35437)].

MSC:

58J05 Elliptic equations on manifolds, general theory
58J35 Heat and other parabolic equation methods for PDEs on manifolds
Full Text: DOI

References:

[1] Baird, P.; Fardoun, A.; Regbaoui, R., The evolution of the scalar curvature of a surface to a prescribed function, Ann. Sc. Norm. Super. Pisa Cl. Sci., 3, 17-38 (2004) · Zbl 1170.58306
[2] Brezis, H.; Merle, E., Uniform estimates and blow-up behavior for solutions of \(- \operatorname{\Delta} u = V(x) e^u\) in two dimensions, Comm. Partial Differential Equations, 16, 1223-1253 (1991) · Zbl 0746.35006
[3] Brouttelande, C., The best-constant problem for a family of Gagliardo-Nirenberg inequalities on a compact Riemannian manifold, Proc. Edinb. Math. Soc., 2, 117-146 (2003) · Zbl 1031.58009
[4] Caffarelli, A.; Yang, S., Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys., 168, 321-336 (1995) · Zbl 0846.58063
[5] Castéras, J., A mean field type flow part I: compactness of solutions to a perturbed mean field type equation, Calc. Var. Partial Differential Equations, 53, 221-246 (2015) · Zbl 1326.35031
[6] Castéras, J., A mean field type flow II: Existence and convergence, Pacific J. Math., 276, 321-345 (2015) · Zbl 1331.53097
[7] Chang, A.; Yang, P., Prescribing Gaussian curvature on \(S^2\), Acta Math., 159, 215-259 (1987) · Zbl 0636.53053
[8] Chang, A.; Yang, P., Conformal deformation of metrics on \(S^2\), J. Differential Geom., 27, 259-296 (1988) · Zbl 0649.53022
[9] Chang, K.; Liu, J., On Nirenberg’s problem, Internat. J. Math., 4, 35-58 (1993) · Zbl 0786.58010
[10] Chen, W.; Ding, W., Scalar curvatures on \(S^2\), Trans. Amer. Math. Soc., 303, 365-382 (1987) · Zbl 0635.35026
[11] Chen, W.; Ding, W., A problem concerning the scalar curvature on \(S^2\), Kexue Tongbao (English Ed.), 33, 533-537 (1988) · Zbl 0676.53048
[12] Chen, W., A Trudinger inequality on surfaces with conical singularities, Proc. Amer. Math. Soc., 108, 821-832 (1990) · Zbl 0697.53009
[13] Chen, C.; Lin, C., Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55, 728-771 (2002) · Zbl 1040.53046
[14] Chen, C.; Lin, C., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56, 1667-1727 (2003) · Zbl 1032.58010
[15] Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) · Zbl 0768.35025
[16] Dávila, J.; del Pino, M.; Wei, J., Singularity formation for the two-dimensional harmonic map flow into \(S^2\), Invent. Math., 219, 345-466 (2020) · Zbl 1445.35082
[17] Ding, W.; Jost, J.; Li, J.; Wang, G., The differential equation \(\operatorname{\Delta} u = 8 \pi - 8 \pi h e^u\) on a compact Riemann surface, Asian J. Math., 1, 230-248 (1997) · Zbl 0955.58010
[18] Ding, W.; Jost, J.; Li, J.; Wang, G., Existence results for mean field equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16, 653-666 (1999) · Zbl 0937.35055
[19] Djadli, Z., Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10, 205-220 (2008) · Zbl 1151.53035
[20] Fang, Y.; Yang, Y., Trudinger-Moser inequalities on a closed Riemannian surface with the action of a finite isometric group, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20, 1295-1324 (2020) · Zbl 1471.30005
[21] Fang, Y.; Yang, Y., Trudinger-Moser inequalities on a closed Riemann surface with a symmetric conical metric · Zbl 07914974
[22] Feehan, P.; Maridakis, M., Lojasiewicz-Simon gradient inequalities for analytic and Morse-Bott functions on Banach spaces, J. Reine Angew. Math., 765, 35-67 (2020) · Zbl 1447.58018
[23] Fontana, L., Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., 68, 415-454 (1993) · Zbl 0844.58082
[24] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, N. J. · Zbl 0144.34903
[25] Kazdan, J.; Warner, F., Curvature functions for compact 2-manifolds, Ann. of Math., 99, 14-47 (1974) · Zbl 0273.53034
[26] Li, J.; Li, Y., Solutions for Toda systems on Riemann surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4, 703-728 (2005) · Zbl 1170.35410
[27] Li, J.; Zhu, C., The convergence of the mean field type flow at a critical case, Calc. Var. Partial Differential Equations, 58, 60-78 (2019) · Zbl 1415.58014
[28] Lin, L.; Sesum, N., Blow-up of the mean curvature at the first singular time of the mean curvature flow, Calc. Var. Partial Differential Equations, 55, 3, Article 65 pp. (2016), 16 pp. · Zbl 1343.53064
[29] Malchiodi, A., Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21, 277-294 (2008) · Zbl 1144.35372
[30] Mazzeo, R.; Rubinstein, Y.; Sesum, N., Ricci flow on surfaces with conic singularities, Anal. PDE, 8, 839-882 (2015) · Zbl 1322.53070
[31] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 1077-1091 (1971) · Zbl 0213.13001
[32] Moser, J., On a nonlinear problem in differential geometry, (Dynamical Systems. Dynamical Systems, Proc. Sympos., Univ. Bahia, Salvador, 1971 (1973), Academic Press: Academic Press New York), 273-280 · Zbl 0275.53027
[33] Nolasco, M.; Tarantello, G., On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145, 161-195 (1998) · Zbl 0980.46022
[34] Simon, L., Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math., 118, 525-571 (1983) · Zbl 0549.35071
[35] Struwe, M.; Tarantello, G., On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 1, 109-121 (1998) · Zbl 0912.58046
[36] Sun, L.; Wang, Y.; Yang, Y., Existence results for a generalized mean field equation on a closed Riemann surface
[37] Sun, L.; Zhu, J., Global existence and convergence of a flow to Kazdan-Warner equation with non-negative prescribed function, Calc. Var. Partial Differential Equations, 60, 1, Article 42 pp. (2021), 26 pp. · Zbl 1458.35437
[38] Sun, L.; Zhu, J., Existence of Kazdan-Warner equation with sign-changing prescribed function
[39] Tarantello, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37, 3769-3796 (1996) · Zbl 0863.58081
[40] Wang, Y., A mean field type flow on a closed Riemannian surface with the action of an isometric group, Taiwanese J. Math., 25, 1053-1072 (2021) · Zbl 1476.58022
[41] Wu, Z.; Yin, J.; Wang, C., Elliptic and Parabolic Equations (2006), World Scientific Publishing · Zbl 1108.35001
[42] Yang, Y., Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics (2001), Springer: Springer New York · Zbl 0982.35003
[43] Yang, Y.; Zhu, X., A remark on a result of Ding-Jost-Li-Wang, Proc. Amer. Math. Soc., 145, 3953-3959 (2017) · Zbl 1369.58010
[44] Yang, Y.; Zhu, X., Existence of solutions to a class of Kazdan-Warner equations on compact Riemannian surface, Sci. China Math., 61, 1109-1128 (2018) · Zbl 1394.58007
[45] Yang, Y.; Zhu, X., Mean field equations on a closed Riemannian surface with the action of an isometric group, Internat. J. Math., 31, 9, Article 2050072 pp. (2020), 26 pp. · Zbl 1451.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.