×

Global existence and convergence of a flow to Kazdan-Warner equation with non-negative prescribed function. (English) Zbl 1458.35437

Summary: We consider an evolution problem associated to the Kazdan-Warner equation on a closed Riemann surface \(\Sigma,g)\) \[ -\Delta_gu=8\pi \left(\dfrac{he^u}{\int_\Sigma he^u\text{d}\mu_g} - \dfrac{1}{\int_\Sigma \text{d}\mu_g}\right) \] where the prescribed function \(h\geq 0\) and \(\max_\Sigma h>0\). We prove the global existence and convergence under additional assumptions such as \[ \Delta_g\ln h(p_0)+8\pi -2K(p_0)>0 \] for any maximum point \(p_0\) of the sum of \(2\ln h\) and the regular part of the Green function, where \(K\) is the Gaussian curvature of \(\Sigma\). In particular, this gives a new proof of the existence result by Y. Yang and X. Zhu [Proc. Am. Math. Soc. 145, No. 9, 3953–3959 (2017; Zbl 1369.58010)] which generalizes existence result of W. Ding et al. [Asian J. Math. 1, No. 2, 230–248 (1997; Zbl 0955.58010)] to the non-negative prescribed function case.

MSC:

35R01 PDEs on manifolds
35K59 Quasilinear parabolic equations
35B33 Critical exponents in context of PDEs
58J35 Heat and other parabolic equation methods for PDEs on manifolds

References:

[1] Brendle, S., Global existence and convergence for a higher order flow in conformal geometry, Ann. Math., 2, 158, 323-343 (2003) · Zbl 1042.53016 · doi:10.4007/annals.2003.158.323
[2] Brezis, H.; Merle, F., Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x)e^u\) in two dimensions, Commun. Partial Differ. Equ., 16, 1223-1253 (1991) · Zbl 0746.35006 · doi:10.1080/03605309108820797
[3] Caffarelli, LA; Yang, YS, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Commun. Math. Phys., 168, 321-336 (1995) · Zbl 0846.58063 · doi:10.1007/BF02101552
[4] Castéras, JB, A mean field type flow II: existence and convergence, Pac. J. Math., 276, 321-345 (2015) · Zbl 1331.53097 · doi:10.2140/pjm.2015.276.321
[5] Castéras, JB, A mean field type flow part I: compactness of solutions to a perturbed mean field type equation, Calc. Var. Partial Differ. Equ., 53, 221-246 (2015) · Zbl 1326.35031 · doi:10.1007/s00526-014-0746-5
[6] Chang, KC, Heat flow and boundary value problem for harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6, 363-395 (1989) · Zbl 0687.58004 · doi:10.1016/S0294-1449(16)30316-X
[7] Chang, SYA; Yang, PC, Prescribing Gaussian curvature on \(S^2\), Acta Math., 159, 215-259 (1987) · Zbl 0636.53053 · doi:10.1007/BF02392560
[8] Chen, CC; Lin, CS, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., 55, 728-771 (2002) · Zbl 1040.53046 · doi:10.1002/cpa.3014
[9] Chen, CC; Lin, CS, Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., 56, 1667-1727 (2003) · Zbl 1032.58010 · doi:10.1002/cpa.10107
[10] Chen, WX; Ding, WY, Scalar curvatures on \(S^2\), Trans. Am. Math. Soc., 303, 365-382 (1987) · Zbl 0635.35026 · doi:10.2307/2000798
[11] Chen, WX; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) · Zbl 0768.35025 · doi:10.1215/S0012-7094-91-06325-8
[12] Ding, W.; Jost, J.; Li, J.; Wang, G., The differential equation \(\Delta u=8\pi -8\pi he^u\) on a compact Riemann surface, Asian J. Math., 1, 230-248 (1997) · Zbl 0955.58010 · doi:10.4310/AJM.1997.v1.n2.a3
[13] Ding, W.; Jost, J.; Li, J.; Wang, G., Existence results for mean field equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16, 653-666 (1999) · Zbl 0937.35055 · doi:10.1016/S0294-1449(99)80031-6
[14] Djadli, Z., Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10, 205-220 (2008) · Zbl 1151.53035 · doi:10.1142/S0219199708002776
[15] Djadli, Z.; Malchiodi, A., Existence of conformal metrics with constant \(Q\)-curvature, Ann. Math., 2, 168, 813-858 (2008) · Zbl 1186.53050 · doi:10.4007/annals.2008.168.813
[16] Evans, L.C.: Partial differential equations. volume 19 of Graduate Studies in Mathematics. 2nd ed., American Mathematical Society, Providence, RI. doi:10.1090/gsm/019 (2010) · Zbl 1194.35001
[17] Feehan, PM; Maridakis, M., Łojasiewicz-simon gradient inequalities for analytic and morse-bott functions on banach spaces, Journal für die reine und angewandte Mathematik (Crelles J.) (2019) · Zbl 1447.58018 · doi:10.1515/crelle-2019-0029
[18] Fontana, L., Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Commen. Math. Helv., 68, 415-454 (1993) · Zbl 0844.58082 · doi:10.1007/BF02565828
[19] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Englewood Cliffs: Prentice-Hall Inc, Englewood Cliffs · Zbl 0144.34903
[20] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin. Reprint of the 1998 edition (2001) · Zbl 1042.35002
[21] Jendoubi, MA, A simple unified approach to some convergence theorems of L, Simon. J. Funct. Anal., 153, 187-202 (1998) · Zbl 0895.35012 · doi:10.1006/jfan.1997.3174
[22] Kazdan, JL; Warner, FW, Curvature functions for compact \(2\)-manifolds, Ann. Math., 2, 99, 14-47 (1974) · Zbl 0273.53034 · doi:10.2307/1971012
[23] Li, J.; Zhu, C., The convergence of the mean field type flow at a critical case, Calc. Var. Partial Differ. Equ., 58, 18 (2019) · Zbl 1415.58014 · doi:10.1007/s00526-019-1507-2
[24] Li, Y.; Wang, Y., A weak energy identity and the length of necks for a sequence of Sacks-Uhlenbeck \(\alpha \)-harmonic maps, Adv. Math., 225, 1134-1184 (2010) · Zbl 1203.58003 · doi:10.1016/j.aim.2010.03.020
[25] Li, YY; Shafrir, I., Blow-up analysis for solutions of \(-\Delta u=Ve^u\) in dimension two, Indiana Univ. Math. J., 43, 1255-1270 (1994) · Zbl 0842.35011 · doi:10.1512/iumj.1994.43.43054
[26] Lin, CS, Topological degree for mean field equations on \(S^2\), Duke Math. J., 104, 501-536 (2000) · Zbl 0964.35038 · doi:10.1215/S0012-7094-00-10437-1
[27] Malchiodi, A., Morse theory and a scalar field equation on compact surfaces, Adv. Differe. Equ., 13, 1109-1129 (2008) · Zbl 1175.53052
[28] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092. doi:10.1512/iumj.1971.20.20101 (1970/71) · Zbl 0203.43701
[29] Simon, L., Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math., 2, 118, 525-571 (1983) · Zbl 0549.35071 · doi:10.2307/2006981
[30] Struwe, M., Curvature flows on surfaces, Ann. Sci. Norm. Super. Pisa Cl. Sci., 1, 247-274 (2002) · Zbl 1150.53025
[31] Struwe, M., A flow approach to Nirenberg’s problem, Duke Math. J., 128, 19-64 (2005) · Zbl 1087.53034 · doi:10.1215/S0012-7094-04-12812-X
[32] Tarantello, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37, 3769-3796 (1996) · Zbl 0863.58081 · doi:10.1063/1.531601
[33] Yang, Y.: Solitons in field theory and nonlinear analysis. Springer Monographs in Mathematics. Springer, New York. (2001). doi:10.1007/978-1-4757-6548-9 · Zbl 0982.35003
[34] Yang, Y.; Zhu, X., A remark on a result of Ding-Jost-Li-Wang, Proc. Am. Math. Soc., 145, 3953-3959 (2017) · Zbl 1369.58010 · doi:10.1090/proc/13515
[35] Yang, Y.; Zhu, X., Mean field equations on a closed Riemannian surface with the action of an isometric group, Int. J. Math., 31, 2050072, 26 (2020) · Zbl 1451.58009 · doi:10.1142/S0129167X2050072X
[36] Zhu, X., A generalized Trudinger-Moser inequality on a compact Riemannian surface, Nonlinear Anal., 169, 38-58 (2018) · Zbl 1384.58016 · doi:10.1016/j.na.2017.12.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.