×

On Gaussian curvature flow. (English) Zbl 1479.58023

The authors study the Nirenberg problem on \(S^2\): Given a smooth function \(f:S^2\to\mathbb{R}\) which is positive somewhere, does there exist a metric \(g\) on \(S^2\) conformally equivalent to the standard metric \(g_0\) and having Gaussian curvature \(f\). The main theorem states that a solution exists under the following assumptions.
(a) Critical points of \(f\) with \(f>0\) are isolated.
(b) \(|\nabla f(x)|^2+|\Delta f(x)|^2 \ne 0\) whenever \(f(x)>0\).
(c) Let \(p\) be the number of local maximum points of \(f\) with positive values and let \(q\) be the number of saddle points of \(f\) with positive values and negative Laplace, then \(p-q\ne1\).
The proof is based on a normalized Gaussian curvature flow given by \[ \partial_tu=\frac{\int_{S^2} fK(t) d\mu(t)}{\int_{S^2} f^2 d\mu(t)}f-K(t),\quad g(t)=e^{2u(t)}g_0 \] where \(K(t)\) is the Gaussian curvature of \(g(t)\) and \(d\mu(t)=e^{2u(t)}d\mu_0\).

MSC:

58J35 Heat and other parabolic equation methods for PDEs on manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35K55 Nonlinear parabolic equations
58J05 Elliptic equations on manifolds, general theory
Full Text: DOI

References:

[1] Aubin, T., Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0896.53003
[2] Aubin, T., Meilleures constantes dans le théorèm d’inclusion de Sobolev et un théorèm de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32, 148-174 (1979) · Zbl 0411.46019
[3] Brendle, S., Global existence and convergence for a higher order flow in conformal geometry, Ann. Math., 158, 323-343 (2003) · Zbl 1042.53016
[4] Brezis, H.; Merle, F., Uniform estimates and blow-up behavior for solutions of \(- \operatorname{\Delta} u = V(x) e^u\) in two dimensions, Commun. Partial Differ. Equ., 16, 1223-1253 (1991) · Zbl 0746.35006
[5] Brendle, S., Convergence of the Yamabe flow for arbitrary initial energy, J. Differ. Geom., 69, 217-278 (2005) · Zbl 1085.53028
[6] Brezis, H.; Li, Y.; Shafrir, I., A \(\sup + \inf\) inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal., 115, 2, 344-358 (1993) · Zbl 0794.35048
[7] Chang, K. C., Infinite Dimensional Morse Theory and Multiple Solution Problems (1993), Birkhäuser · Zbl 0779.58005
[8] Chang, K. C.; Liu, J., On Nirenberg’s problem, Int. J. Math., 4, 1, 35-58 (1993) · Zbl 0786.58010
[9] Chang, S. Y.; Yang, P., Conformal deformation of metrics on \(\mathbb{S}^2\), J. Differ. Geom., 27, 2, 259-296 (1988) · Zbl 0649.53022
[10] Chang, S. Y.; Yang, P., Prescribing Gaussian curvature on \(\mathbb{S}^2\), Acta Math., 159, 3-4, 215-259 (1987) · Zbl 0636.53053
[11] Chang, S. Y.; Gursky, M.; Yang, P., The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differ. Equ., 1, 2, 205-229 (1993) · Zbl 0822.35043
[12] Chen, W.; Ding, W., Scalar curvatures on \(\mathbb{S}^2\), Trans. Am. Math. Soc., 303, 1, 365-382 (1987) · Zbl 0635.35026
[13] Chen, W.; Li, C., A necessary and sufficient condition for the Nirenberg problem, Commun. Pure Appl. Math., 48, 6, 657-667 (1995) · Zbl 0830.35034
[14] Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) · Zbl 0768.35025
[15] Chen, X.; Xu, X., The scalar curvature flow on \(\mathbb{S}^n\)—perturbation theorem revisited, Invent. Math.. Invent. Math., Invent. Math., 187, 2, 507-509 (2012), with an erratum · Zbl 1286.53072
[16] Chen, X.; Xu, X., Q-curvature flow on the standard sphere of even dimension, J. Funct. Anal., 261, 934-980 (2011) · Zbl 1219.53065
[17] Hamilton, R., The Ricci flow on surfaces, (Mathematics and General Relativity. Mathematics and General Relativity, Santa Cruz, CA, 1986. Mathematics and General Relativity. Mathematics and General Relativity, Santa Cruz, CA, 1986, Contemp. Math., vol. 71 (1988), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 237-262 · Zbl 0663.53031
[18] Han, Z., Prescribing Gaussian curvature on \(\mathbb{S}^2\), Duke Math. J., 61, 3, 679-703 (1990) · Zbl 0715.53034
[19] Ho, P., Results of prescribing Q-curvature on \(\mathbb{S}^n\), Arch. Math. (Basel), 100, 1, 85-93 (2013) · Zbl 1334.53067
[20] Huisken, G.; Polden, A., Geometric evolution equations for hypersurfaces, (Calculus of Variations and Geometric Evolution Problems. Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996. Calculus of Variations and Geometric Evolution Problems. Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996, Lecture Notes in Math., vol. 1713 (1999), Fond. CIME/CIME Found. Subser., Springer: Fond. CIME/CIME Found. Subser., Springer Berlin), 45-84 · Zbl 0942.35047
[21] Li, Y.; Shafrir, I., Blow-up analysis for solutions of \(- \operatorname{\Delta} u = V e^u\) in dimension two, Indiana Univ. Math. J., 43, 4, 1255-1270 (1994) · Zbl 0842.35011
[22] Ma, L.; Hong, M., Curvature flow to the Nirenberg problem, Arch. Math. (Basel), 94, 3, 277-289 (2010) · Zbl 1195.53095
[23] Malchiodi, A.; Struwe, M., Q-curvature flow on \(\mathbb{S}^4\), J. Differ. Geom., 73, 1, 1-44 (2006) · Zbl 1099.53034
[24] Moser, J., On a nonlinear problem in differential geometry, (Dynamical Systems. Dynamical Systems, Proc. Sympos., Univ. Bahia, Salvador, 1971 (1973), Academic Press: Academic Press New York), 273-280 · Zbl 0275.53027
[25] Onofri, E., On the positivity of the effective action in a theory of random surfaces, Commun. Math. Phys., 86, 321-326 (1982) · Zbl 0506.47031
[26] Struwe, M., A flow approach to Nirenberg problem, Duke Math. J., 128, 1, 19-64 (2005) · Zbl 1087.53034
[27] Struwe, M., Curvature flows on surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 1, 247-274 (2002) · Zbl 1150.53025
[28] Xu, X.; Yang, P., Remarks on prescribing Gauss curvature, Trans. Am. Math. Soc., 336, 2, 831-840 (1993) · Zbl 0823.53034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.