×

Nonlinear conductivity and the ringdown of currents in metallic holography. (English) Zbl 1390.83148

Summary: We study the electric and heat current response resulting from an electric field quench in a holographic model of momentum relaxation at nonzero charge density. After turning the electric field off, currents return to equilibrium as governed by the vector quasi-normal modes of the dual black brane, whose spectrum depends qualitatively on a parameter controlling the strength of inhomogeneity. We explore the dynamical phase diagram as a function of this parameter, showing that signatures of incoherent transport become identifiable as an oscillatory ringdown of the heat current. We also study nonlinear conductivity by holding the electric field constant. For small electric fields a balance is reached between the driving electric field and the momentum sink – a steady state described by DC linear response. For large electric fields Joule heating becomes important and the black branes exhibit significant time dependence. In a regime where the rate of temperature increase is small, the nonlinear electrical conductivity is well approximated by the DC linear response calculation at an appropriate effective temperature.

MSC:

83C50 Electromagnetic fields in general relativity and gravitational theory

References:

[1] Horowitz, GT; Santos, JE; Tong, D., Optical conductivity with holographic lattices, JHEP, 07, 168, (2012) · Zbl 1397.83154 · doi:10.1007/JHEP07(2012)168
[2] Horowitz, GT; Santos, JE; Tong, D., Further evidence for lattice-induced scaling, JHEP, 11, 102, (2012) · doi:10.1007/JHEP11(2012)102
[3] Donos, A.; Hartnoll, SA, Interaction-driven localization in holography, Nature Phys., 9, 649, (2013) · doi:10.1038/nphys2701
[4] Horowitz, GT; Santos, JE, General relativity and the cuprates, JHEP, 06, 087, (2013) · Zbl 1342.83084 · doi:10.1007/JHEP06(2013)087
[5] Ling, Y.; Niu, C.; Wu, J-P; Xian, Z-Y, Holographic lattice in Einstein-Maxwell-Dilaton gravity, JHEP, 11, 006, (2013) · doi:10.1007/JHEP11(2013)006
[6] Chesler, P.; Lucas, A.; Sachdev, S., Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev., D 89, 026005, (2014)
[7] Balasubramanian, K.; Herzog, CP, Losing forward momentum holographically, Class. Quant. Grav., 31, 125010, (2014) · Zbl 1295.83008 · doi:10.1088/0264-9381/31/12/125010
[8] Donos, A.; Gauntlett, JP, Thermoelectric DC conductivities from black hole horizons, JHEP, 11, 081, (2014) · doi:10.1007/JHEP11(2014)081
[9] Donos, A.; Goutéraux, B.; Kiritsis, E., Holographic metals and insulators with helical symmetry, JHEP, 09, 038, (2014) · doi:10.1007/JHEP09(2014)038
[10] Donos, A.; Gauntlett, JP, The thermoelectric properties of inhomogeneous holographic lattices, JHEP, 01, 035, (2015) · doi:10.1007/JHEP01(2015)035
[11] Rangamani, M.; Rozali, M.; Smyth, D., Spatial modulation and conductivities in effective holographic theories, JHEP, 07, 024, (2015) · Zbl 1388.83315 · doi:10.1007/JHEP07(2015)024
[12] Davison, RA; Schalm, K.; Zaanen, J., Holographic duality and the resistivity of strange metals, Phys. Rev., B 89, 245116, (2014) · doi:10.1103/PhysRevB.89.245116
[13] Lucas, A.; Sachdev, S.; Schalm, K., Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev., D 89, 066018, (2014)
[14] Hartnoll, SA; Santos, JE, Disordered horizons: holography of randomly disordered fixed points, Phys. Rev. Lett., 112, 231601, (2014) · doi:10.1103/PhysRevLett.112.231601
[15] Lucas, A., Conductivity of a strange metal: from holography to memory functions, JHEP, 03, 071, (2015) · doi:10.1007/JHEP03(2015)071
[16] O’Keeffe, DK; Peet, AW, Perturbatively charged holographic disorder, Phys. Rev., D 92, 046004, (2015)
[17] Hartnoll, SA; Ramirez, DM; Santos, JE, Emergent scale invariance of disordered horizons, JHEP, 09, 160, (2015) · Zbl 1388.83456 · doi:10.1007/JHEP09(2015)160
[18] Donos, A.; Gauntlett, JP, Holographic Q-lattices, JHEP, 04, 040, (2014) · doi:10.1007/JHEP04(2014)040
[19] Andrade, T.; Withers, B., A simple holographic model of momentum relaxation, JHEP, 05, 101, (2014) · doi:10.1007/JHEP05(2014)101
[20] Donos, A.; Gauntlett, JP, Novel metals and insulators from holography, JHEP, 06, 007, (2014) · doi:10.1007/JHEP06(2014)007
[21] Taylor, M.; Woodhead, W., Inhomogeneity simplified, Eur. Phys. J., C 74, 3176, (2014) · doi:10.1140/epjc/s10052-014-3176-9
[22] T. Andrade, A simple model of momentum relaxation in Lifshitz holography, arXiv:1602.00556 [INSPIRE].
[23] Iqbal, N.; Liu, H., Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev., D 79, 025023, (2009)
[24] Donos, A.; Gauntlett, JP, Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity, Phys. Rev., D 92, 121901, (2015)
[25] Banks, E.; Donos, A.; Gauntlett, JP, Thermoelectric DC conductivities and Stokes flows on black hole horizons, JHEP, 10, 103, (2015) · Zbl 1388.83379 · doi:10.1007/JHEP10(2015)103
[26] Davison, RA, Momentum relaxation in holographic massive gravity, Phys. Rev., D 88, 086003, (2013)
[27] Blake, M., Momentum relaxation from the fluid/gravity correspondence, JHEP, 09, 010, (2015) · Zbl 1388.83185 · doi:10.1007/JHEP09(2015)010
[28] Davison, RA; Goutéraux, B., Momentum dissipation and effective theories of coherent and incoherent transport, JHEP, 01, 039, (2015) · doi:10.1007/JHEP01(2015)039
[29] Davison, RA; Goutéraux, B., Dissecting holographic conductivities, JHEP, 09, 090, (2015) · Zbl 1388.83220 · doi:10.1007/JHEP09(2015)090
[30] Andrade, T.; Gentle, SA; Withers, B., Drude in D major, JHEP, 06, 134, (2016) · Zbl 1388.83163 · doi:10.1007/JHEP06(2016)134
[31] Hashimoto, K.; Kinoshita, S.; Murata, K.; Oka, T., Electric field quench in AdS/CFT, JHEP, 09, 126, (2014) · doi:10.1007/JHEP09(2014)126
[32] Amiri-Sharifi, S.; Sepangi, HR; Ali-Akbari, M., Electric field quench, equilibration and universal behavior, Phys. Rev., D 91, 126007, (2015)
[33] Ebrahim, H.; Heshmatian, S.; Ali-Akbari, M., Thermal quench at finite ’t Hooft coupling, Nucl. Phys., B 904, 527, (2016) · Zbl 1332.81173 · doi:10.1016/j.nuclphysb.2016.02.003
[34] Karch, A.; O’Bannon, A., Metallic AdS/CFT, JHEP, 09, 024, (2007) · doi:10.1088/1126-6708/2007/09/024
[35] Albash, T.; Filev, VG; Johnson, CV; Kundu, A., Quarks in an external electric field in finite temperature large-N gauge theory, JHEP, 08, 092, (2008) · doi:10.1088/1126-6708/2008/08/092
[36] Karch, A.; Sondhi, SL, Non-linear, finite frequency quantum critical transport from AdS/CFT, JHEP, 01, 149, (2011) · Zbl 1214.83056 · doi:10.1007/JHEP01(2011)149
[37] Sonner, J.; Green, AG, Hawking radiation and non-equilibrium quantum critical current noise, Phys. Rev. Lett., 109, 091601, (2012) · doi:10.1103/PhysRevLett.109.091601
[38] Berridge, AM; Green, AG, Nonequilibrium conductivity at quantum critical points, Phys. Rev., B 88, 220512, (2013) · doi:10.1103/PhysRevB.88.220512
[39] M. Baggioli and O. Pujolàs, On Effective Holographic Mott Insulators, arXiv:1604.08915 [INSPIRE].
[40] Kundu, A.; Kundu, S., Steady-state physics, effective temperature dynamics in holography, Phys. Rev., D 91, 046004, (2015) · Zbl 1388.83285
[41] Kundu, A., Effective temperature in steady-state dynamics from holography, JHEP, 09, 042, (2015) · Zbl 1388.83285 · doi:10.1007/JHEP09(2015)042
[42] Horowitz, GT; Iqbal, N.; Santos, JE, Simple holographic model of nonlinear conductivity, Phys. Rev., D 88, 126002, (2013)
[43] Rangamani, M.; Rozali, M.; Wong, A., Driven holographic cfts, JHEP, 04, 093, (2015) · Zbl 1388.83499 · doi:10.1007/JHEP04(2015)093
[44] Bardoux, Y.; Caldarelli, MM; Charmousis, C., Shaping black holes with free fields, JHEP, 05, 054, (2012) · Zbl 1348.83043 · doi:10.1007/JHEP05(2012)054
[45] Hartnoll, SA; Ramirez, DM; Santos, JE, Entropy production, viscosity bounds and bumpy black holes, JHEP, 03, 170, (2016) · Zbl 1388.83457 · doi:10.1007/JHEP03(2016)170
[46] Bhaseen, MJ; Gauntlett, JP; Simons, BD; Sonner, J.; Wiseman, T., Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett., 110, 015301, (2013) · doi:10.1103/PhysRevLett.110.015301
[47] K. Damle and S. Sachdev, Nonzero-temperature transport near quantum critical points, Phys. Rev.B 56 (1997) 8714 [cond-mat/9705206] [INSPIRE].
[48] Green, AG; Sondhi, SL, Nonlinear quantum critical transport and the Schwinger mechanism for a superfluid-Mott-insulator transition of bosons, Phys. Rev. Lett., 95, 267001, (2005) · doi:10.1103/PhysRevLett.95.267001
[49] Chesler, PM; Yaffe, LG, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP, 07, 086, (2014) · Zbl 1421.81111 · doi:10.1007/JHEP07(2014)086
[50] Bianchi, M.; Freedman, DZ; Skenderis, K., Holographic renormalization, Nucl. Phys., B 631, 159, (2002) · Zbl 0995.81075 · doi:10.1016/S0550-3213(02)00179-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.