×

Mean value and Taylor-type results for tempered fractional derivatives. (English) Zbl 1541.26028

Summary: In this paper, we deal with the mean value theorem for tempered fractional operators, some properties with monotone functions and the Taylor theorem for Caputo tempered fractional derivative. Furthermore, we present a geometric interpretation of the Riemann-Liouville tempered fractional integral as a shadow on the wall.

MSC:

26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Almeida, R.; Luísa Morgado, M., Analysis and numerical approximation of tempered fractional calculus of variations problems, J. Comput. Appl. Math., 361, 1-12, 2019 · Zbl 1425.49015 · doi:10.1016/j.cam.2019.04.010
[2] Andrić, M., Pečarić, P., Perić, I.: Inequalities of Opial and Jensen. Element, Zagreb (2016) · Zbl 1357.26004
[3] Buschman, R., Decomposition of an integral operator by use of Mikusinski calculus, SIAM J. Math. Anal., 3, 83-85, 1972 · Zbl 0233.45019 · doi:10.1137/0503010
[4] Bullock, GL, A geometric interpretation of the Riemann-Stieltjes, Am. Math. Mon., 95, 5, 448-455, 1988 · Zbl 0651.26009 · doi:10.1080/00029890.1988.11972030
[5] Chen, M.; Deng, W., Discretized fractional substantial calculus, ESAIM: Math. Model. Numer. Anal., 49, 373-394, 2015 · Zbl 1314.26007
[6] del-Castillo-Negrete, D., Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E, 79, 031120, 2009 · doi:10.1103/PhysRevE.79.031120
[7] Diethelm, K., Fractional Differential Equations, 2010, Berlin: Springer, Berlin · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[8] Diethelm, K., Monotonicity of functions and sing changes of their Caputo derivatives, Fract. Calc. Appl. Anal., 19, 2, 561-566, 2016 · Zbl 1337.26009 · doi:10.1515/fca-2016-0029
[9] Evangelista, L.; Lenzi, E., An Introduction to Anomalous Diffusion and Relaxation, 2023, Cham: Springer, Cham · Zbl 1515.60011 · doi:10.1007/978-3-031-18150-4
[10] Fernandez, A.; Ustaoǧlu, C., On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 366, 112400, 2020 · Zbl 1428.26012 · doi:10.1016/j.cam.2019.112400
[11] Fernadez, A.; Fahad, H., On the importance of conjugation relations in fractional calculus, Comput. Appl. Math., 41, 246, 2022 · Zbl 1513.26012 · doi:10.1007/s40314-022-01925-z
[12] Gajda, J.; Magdziarz, M., Fractional Fokker-Planck equation with tempered \(\alpha \)-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 82, 011117, 2010 · doi:10.1103/PhysRevE.82.011117
[13] Kullberg, A.; del-Castillo-Negrete, D., Transport in the spatially tempered, fractional Fokker-Planck equation, J. Phys. A Math. Theor., 45, 255101, 2012 · Zbl 1250.82032 · doi:10.1088/1751-8113/45/25/255101
[14] Meerschaert, M.; Sikorskii, A., Stochastic Models for Fractional Calculus, 2012, Berlin/Boston: Walter de Gruyter GmbH & Co. KG, Berlin/Boston · Zbl 1247.60003
[15] Meerschaert, M.; Zhang, Y.; Baeumer, B., Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35, L17403, 2008 · doi:10.1029/2008GL034899
[16] Li, C.; Deng, W.; Zhao, L., Well-posedness and numerical algorithm for the tempered fractional differential equations, Discrete Contin Dyn Syst Ser B, 24, 4, 1989-2015, 2019 · Zbl 1414.34005
[17] Obeidat, N.; Bentil, D., New theories and applications of tempered fractional differential equations, Nonlinear Dyn., 105, 1689-1702, 2021 · Zbl 1537.34017 · doi:10.1007/s11071-021-06628-4
[18] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, FCAA, 5, 4, 367-386, 2002 · Zbl 1042.26003
[19] Sabzikar, F.; Meerschaert, M.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28, 2015 · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[20] Salim, A.; Lazreg, J.; Benchohra, M., A Novel study on tempered \((k, \psi )\)-Hilfer fractional operators, Res. Sq., 2023 · doi:10.21203/rs.3.rs-3316718/v1
[21] Stanislavsky, A.; Weron, K.; Weron, A., Diffusion and relaxation controlled by tempered \(\alpha \)-stable processes, Phys. Rev. E, 78, 051106, 2008 · doi:10.1103/PhysRevE.78.051106
[22] Torres Ledesma, C.; Cuti Gutierrez, H.; Ávalos Rodríguez, J.; Zubiaga Vera, W., Some boundedness results for Riemann-Liouville tempered fractional integrals, Fract. Calc. Appl. Anal., 2024 · doi:10.1007/s13540-024-00247-7
[23] Torres Ledesma, C.; Cuti Gutierrez, H.; Ávalos Rodríguez, J.; Montalvo Bonilla, M., Boundary value problem with tempered fractional derivatives and oscillating term, J. Pseudo-Differ. Oper. Appl., 14, 62, 2023 · Zbl 07762276 · doi:10.1007/s11868-023-00558-y
[24] Torres Ledesma, C., Tempered fractional differential equation: variational approach, Math. Meth. Appl. Sci., 40, 4962-4973, 2017 · Zbl 1380.34023
[25] Torres Ledesma, C.; Montalvo Bonilla, M., Fractional Sobolev space with Riemann-Liouville fractional derivative and application to a fractional concave-convex problem, Adv. Oper. Theory, 6, 65, 2021 · Zbl 1490.26006 · doi:10.1007/s43036-021-00159-w
[26] Zayernouri, M.; Ainsworth, M.; Em Karniadakis, G., Tempered fractional Sturm-Liouville eigenproblems, SIAM J. Sci. Comput., 37, 4, A1777-A1800, 2015 · Zbl 1323.34012 · doi:10.1137/140985536
[27] Zhang, Y., Moments for tempered fractional advection-diffusion equations, J. Stat. Phys., 139, 915-939, 2010 · Zbl 1301.82044 · doi:10.1007/s10955-010-9965-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.