×

Boundary value problem with tempered fractional derivatives and oscillating term. (English) Zbl 07762276

Summary: In this article, a class of boundary value problem with tempered fractional derivatives is studied. By using a variational principle due to B. Ricceri [J. Comput. Appl. Math. 113, No. 1–2, 401–410 (2000; Zbl 0946.49001)], the existence of infinitely many weak solutions for these problems is established by requiring that the nonlinear term \(f\) has a suitable oscillating behavior either at the origin or at infinity.

MSC:

34A08 Fractional ordinary differential equations
34B09 Boundary eigenvalue problems for ordinary differential equations
47J30 Variational methods involving nonlinear operators

Citations:

Zbl 0946.49001
Full Text: DOI

References:

[1] Afrouzi, G.; Amirkhanlou, S., Infinitely many solutions for elliptic equations involving a general operator in divergence form, Math. Rep., 21, 71, 213-227 (2019) · Zbl 1438.35115
[2] Ambrosio, V.; D’Onofrio, L.; Molica Bisci, G., On nonlocal fractional Laplacian problems with oscillating potentials, Rock. Mt. J. Math., 48, 1399-1436 (2018) · Zbl 1405.35063
[3] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460-481 (2017) · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006
[4] Deng, W.; Zhang, Z., Variational formulation and efficient implementation for solving the tempered fractional problems, Numer. Methods Partial Differ. Eq., 34, 1224-1257 (2018) · Zbl 1407.82055 · doi:10.1002/num.22254
[5] del-Castillo-Negrete, D., Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E, 79, 031120 (2009) · doi:10.1103/PhysRevE.79.031120
[6] Diethelm, K., The Analysis of Fractional Differential Equations (2010), Berlin: Springer, Berlin · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[7] Feng, X.; Sutton, M., A new theory of fractional differential calculus, Anal. Appl., 19, 4, 715-750 (2021) · Zbl 1479.26007 · doi:10.1142/S0219530521500019
[8] Fisher, B.; Jolevsaka-Tuneska, B.; Adem KiliÇman, E., On defining the incomplete gamma function, Integral Transf. Spec. Funct., 14, 4, 293-299 (2003) · Zbl 1039.33001 · doi:10.1080/1065246031000081667
[9] Gabrovsek, B.; Molica Bisci, G.; Repovs, D., On nonlocal Dirichlet problems with oscillating term, Discrete Contin. Dyn. Syst. S (2023) · Zbl 1520.47113 · doi:10.3934/dcdss.2022130
[10] Gajda, J.; Magdziarz, M., Fractional Fokker-Planck equation with tempered \(\alpha \)-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 82 (2010) · doi:10.1103/PhysRevE.82.011117
[11] Jarad, F.; Abdeljawad, T., Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. S, 13, 3, 709-722 (2020) · Zbl 1444.44002 · doi:10.3934/dcdss.2020039
[12] Jarad, F.; Abdeljawad, T.; Baleanu, D., Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 1, 1-8 (2012) · Zbl 1346.26002
[13] Kilbas, A., Marichev, O., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol 204. Amsterdam (2006) · Zbl 1092.45003
[14] Kullberg, A.; Negrete, D., Transport in the spatially tempered, fractional Fokker-Planck equation, J. Phys. A Math. Theor., 45 (2012) · Zbl 1250.82032 · doi:10.1088/1751-8113/45/25/255101
[15] Kumar, D.; Singh, J., Fractional Calculus in Medical and Health Science (2020), Boca Raton: CRC Press, Boca Raton · Zbl 1460.92004 · doi:10.1201/9780429340567
[16] Liemert, A.; Kienle, A., Fundamental solution of the tempered fractional diffusion equation, J. Math. Phys., 56, 11 (2015) · Zbl 1328.35278 · doi:10.1063/1.4935475
[17] Luchko, Y.; Trujillo, J., Caputo-type modification of the Erdélyi-Kober fractional derivative, Frac. Cal. Appl. Anal., 10, 3, 249-267 (2007) · Zbl 1152.26304
[18] Machado, J.; Tenreiro, J.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[19] Magin, R., Fractional calculus in bioengineering, part3, Crit. Rev. Biomed. Eng., 32, 3-4 (2004)
[20] Machado, J.; Mainardi, F.; Kiryakova, V., Fractional calculus: Quo vadimus?(Where are we going?), Frac. Cal. Appl. Anal., 18, 2, 495-526 (2015) · Zbl 1309.26011 · doi:10.1515/fca-2015-0031
[21] Meerschaert, M.; Zhang, Y.; Baeumer, B., Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35, L17403 (2008) · doi:10.1029/2008GL034899
[22] Oliveira, D.; Capelas De Oliveira, E., Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37, 3, 3672-3690 (2018) · Zbl 1401.26014 · doi:10.1007/s40314-017-0536-8
[23] Pandey, P.; Pandey, R.; Yadav, S.; Agrawal, O., Variational approach for tempered fractional Sturm-Liouville problem, Int. J. Appl. Comput. Math, 7, 51 (2021) · Zbl 1491.34019 · doi:10.1007/s40819-021-01000-x
[24] Ricceri, B., A general variational principle and some of its applications, J. Comput. Appl. Math., 113, 401-410 (2000) · Zbl 0946.49001 · doi:10.1016/S0377-0427(99)00269-1
[25] Sabzikar, F.; Meerschaert, M.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28 (2015) · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[26] Saifullad, S.; Ali, A.; Khan, A.; Shah, K.; Abdeljawad, T., A novel tempered fractional transform: theory, properties and applications to differential equations, Fractals (2023) · doi:10.1142/S0218348X23400455
[27] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integral and Derivatives: Theory and Applications (1993), Yverdon: Gordon and Breach Science, Yverdon · Zbl 0818.26003
[28] Stanislavsky, A.; Weron, K.; Weron, A., Diffusion and relaxation controlled by tempered \(\alpha \)-stable processes, Phys. Rev. E, 78 (2008) · doi:10.1103/PhysRevE.78.051106
[29] Tarasov, V., Handbook of Fractional Calculus with Applications (2019), Berlin: de Gruyter, Berlin · Zbl 1410.26006
[30] Tavares, D.; Ricardo, A.; Torres, D., Caputo derivatives of fractional variable order: numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35, 69-87 (2016) · Zbl 1538.65275 · doi:10.1016/j.cnsns.2015.10.027
[31] Torres Ledesma, C., Boundary value problem with fractional \(p\)-Laplacian operator, Adv. Nonlinear Anal., 5, 2, 133-146 (2016) · Zbl 1337.26019 · doi:10.1515/anona-2015-0076
[32] Torres Ledesma, C.; Montalvo Bonilla, M., Fractional Sobolev space with Riemann-Liouville fractional derivative and application to a fractional concave-convex problem, Adv. Oper. Theory, 6, 65 (2021) · Zbl 1490.26006 · doi:10.1007/s43036-021-00159-w
[33] Torres Ledesma, C., Sousa, J. Vanterler da C.: Fractional integration by parts and Sobolev-type inequalities for \(\psi \)-fractional operators. Math. Meth. Appl. Sci. 45, 9945-9966 (2022) · Zbl 1529.26009
[34] Torres Ledesma, C., Cuti Gutierrez, H., Ávalos Rodríguez, J., Zubiaga Vera, W.: Some boundedness results for Riemann-Liouville tempered fractional integrals (preprint) (2022)
[35] Torres Ledesma, C., Tempered fractional differential equation: variational approach, Math. Meth. Appl. Sci., 40, 4962-4973 (2017) · Zbl 1380.34023
[36] Torres Ledesma, C., Nyamoradi, N., Pichardo Diestra, O.: Boundary value problem with tempered fractional derivatives. Progr. Fract. Differ. Appl. (accepted for publication) (2023)
[37] Torres Ledesma, C., Nyamoradi, N.: \((k, \psi )\)-Hilfer impulsive variational problem. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 42 (2023) · Zbl 1524.34026
[38] Vanterler da C. Sousa, J., Capelas De Oliveira, E.: Leibniz type rule: \( \psi \)-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 77, 305-311 (2019) · Zbl 1477.26012
[39] Vanterler da C. Sousa, J., Tavares, L., Torres Ledesma, C.: A variational approach for a problem involving a \(\psi \)-Hilfer fractional operators. J. Appl. Anal. Comput. 11(3), 1610-1630 (2021) · Zbl 07905191
[40] Vanterler da C. Sousa, J., Zuo, J., O’Regan, D.: The Nehari manifold for a \(\psi \)-Hilfer fractional \(p\)-Laplacian. Appl. Anal. 101(14), 5076-5106 (2022) · Zbl 1507.35331
[41] Zhang, Y., Moments for tempered fractional advection-diffusion equations, J. Stat. Phys., 139, 915-939 (2010) · Zbl 1301.82044 · doi:10.1007/s10955-010-9965-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.