×

Fractional Sobolev space with Riemann-Liouville fractional derivative and application to a fractional concave-convex problem. (English) Zbl 1490.26006

This paper deals with the existence of weak solutions to a class of Riemann-Liouville fractional equations. In order to prove the existence, the authors introduce a Sobolev space, in which the solutions lie, and provide several properties of this space so that classic arguments for the existence of weak solutions can be employed. In fact, 2/3 of the paper is devoted to obtaining such properties, most of which seem to have a limited novelty in the reviewer’s opinion.
The main contribution of this paper is proving the existence of weak solutions for equations with small derivation order. In the authors’, opinion this is due to the weak character of the proposed solutions and the introduced Sobolev space, suggesting that their approach can be followed to prove the solvability of other fractional equations with small derivation order. Likely to be true, the reader must consider, however, that the introduced space is a fractional Sobolev space and the special form of the equation.
The paper is in general well-written (there are some annoying typos) and technically sound.

MSC:

26A33 Fractional derivatives and integrals
34B15 Nonlinear boundary value problems for ordinary differential equations
35A15 Variational methods applied to PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] Ahmad, B.; Sivasundaram, S., On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217, 480-487 (2010) · Zbl 1207.45014
[2] Bisci, G.; Radulescu, V.; Servadei, R., Variational Method for Nonlocal Fractional Problems (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1356.49003 · doi:10.1017/CBO9781316282397
[3] Bonanno, G.; Rodríguez-López, R.; Tersian, S., Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17, 13, 717-744 (2014) · Zbl 1308.34010 · doi:10.2478/s13540-014-0196-y
[4] Boucenna, A.; Moussaoui, T., Existence of a positive solution for a boundary value problem via a topological-variational theorem, J. Fract. Calc. Appl., 5(3S), 18, 1-9 (2014) · Zbl 1318.34004
[5] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), New York: Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[6] Carcione, J.; Mainardi, F., On the relation between sources and initial conditions for the wave and diffusion equations, Comput. Math. Appl., 73, 6, 906-913 (2017) · Zbl 1409.35130 · doi:10.1016/j.camwa.2016.04.019
[7] De Figueiredo, G., Lectures on the Ekeland Variational Principle with Applications and Detours (1989), Mumbai: Tata Institute of Fundamental Research, Mumbai · Zbl 0688.49011
[8] Demengel, F.; Demengel, G., Functional Spaces for the Theory of Elliptic Partial Differential Equations (2012), London: Springer, London · Zbl 1239.46001 · doi:10.1007/978-1-4471-2807-6
[9] Feckan, M.; Zhou, Y.; Wang, J., On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 3050-3060 (2012) · Zbl 1252.35277 · doi:10.1016/j.cnsns.2011.11.017
[10] Ferrara, M.; Hadjian, A., Variational approach to fractional boundary value problems with two control parameters, Electron. J. Differ. Equ., 2015, 138, 1-15 (2015) · Zbl 1404.34028
[11] Gorenflo, R.; Vessella, S., Abel Integral Equation (1991), Berlin: Springer, Berlin · Zbl 0717.45002 · doi:10.1007/BFb0084665
[12] Guo, L.; Zhang, X., Existence of positive solutions for the singular fractional differential equations, J. Appl. Math. Comput., 44, 215-228 (2014) · Zbl 1300.34017 · doi:10.1007/s12190-013-0689-6
[13] Graef, J.; Kong, L.; Yang, B., Positive solutions for a semipositone fractional boundary value problem with a forcing term, Fract. Calc. Appl. Anal., 15, 8-24 (2012) · Zbl 1284.34032 · doi:10.2478/s13540-012-0002-7
[14] Hassani, H., Generalized shifted chebyshev polynomials: solving a general class of nonlinear variable order fractional PDE, Commun. Nonlinear Sci. Numer. Simul., 85, 105229 (2020) · Zbl 1450.35267 · doi:10.1016/j.cnsns.2020.105229
[15] Jia, M.; Liu, X., Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comput., 232, 313-323 (2014) · Zbl 1410.34019
[16] Jiao, F.; Zhou, Y., Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62, 1181-1199 (2011) · Zbl 1235.34017 · doi:10.1016/j.camwa.2011.03.086
[17] Jiao, F.; Zhou, Y., Existence results for fractional boundary value problem via critical point theory, Int. J. Bifur. Chaos, 22, 1250086 (2012) · Zbl 1258.34015 · doi:10.1142/S0218127412500861
[18] Jin, H.; Liu, W., Eigenvalue problem for fractional differential operator containing left and right fractional derivative, Adv. Differ. Equ., 2016, 246 (2016) · Zbl 1419.34027 · doi:10.1186/s13662-016-0950-z
[19] Mainardi, F., The two forms of fractional relaxation of distributed order, J. Vib. Control, 13, 9-10, 1249-1268 (2007) · Zbl 1165.26302 · doi:10.1177/1077546307077468
[20] Mawhin, J.; Willen, M., Critical Point Theory and Hamiltonian Systems (1989), Berlin: Springer, Berlin · Zbl 0676.58017 · doi:10.1007/978-1-4757-2061-7
[21] Mendez, A.; Torres, C., Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivatives, Fract. Calc. Appl. Anal., 18, 4, 875-890 (2015) · Zbl 1321.34015 · doi:10.1515/fca-2015-0053
[22] Nyamoradi, N., Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions, Meditr. J. Math., 11, 1, 75-87 (2014) · Zbl 1333.34012 · doi:10.1007/s00009-013-0307-8
[23] Ortigueira, M.; Machado, J., On the properties of some operators under the perspective of fractional system theory, Commun. Nonlinear Sci. Numer. Simul., 82, 105022 (2020) · Zbl 1468.34012 · doi:10.1016/j.cnsns.2019.105022
[24] Rabinowitz, P., Minimax Method in Critical Point Theory with Applications to Differential Equations (1986), New York: CBMS American Mathematical Society, New York · Zbl 0609.58002 · doi:10.1090/cbms/065
[25] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals and Derivatives (1993), Yverdon: Gordon and Breach Science Publishers, Yverdon · Zbl 0818.26003
[26] Schechter, M., Linking Methods in Critical Point Theory (1999), Boston: Birkhäuser, Boston · Zbl 0915.35001 · doi:10.1007/978-1-4612-1596-7
[27] Silva, C.; Torres, D., Stability of a fractional HIV/AIDS model, Math. Comput. Simul., 164, 180-190 (2019) · Zbl 1540.92234 · doi:10.1016/j.matcom.2019.03.016
[28] Sousa, V.; Capelas de Oliveira, E.; Magna, L., Fractional calculus and the ESR test, AIMS Math., 2, 4, 692-705 (2017) · Zbl 1427.35313 · doi:10.3934/Math.2017.4.692
[29] Sousa, V., Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math., 37, 5, 6903-6919 (2018) · Zbl 1438.92033 · doi:10.1007/s40314-018-0717-0
[30] Sun, H-R; Zhang, Q-G, Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique, Comput. Math. Appl., 64, 10, 3436-3443 (2012) · Zbl 1268.34027 · doi:10.1016/j.camwa.2012.02.023
[31] Shen, T., Liu, W.: Application of variational methods to BVPs of fractional differential equations with \(p\)-Laplacian operator. Preprint
[32] Tian, Y.; Nieto, JJ, The applications of critical-point theory to discontinuous fractional order differential equations, Proc. Edinburgh Math. Soc., 60, 1021-1051 (2017) · Zbl 1377.34015 · doi:10.1017/S001309151600050X
[33] Torres, C., Existence of solution for fractional Hamiltonian systems, Electron. J. Differ. Eq., 2013, 259, 1-12 (2013) · Zbl 1295.34012
[34] Torres, C., Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., 5, 1, 1-10 (2014) · Zbl 1499.34161
[35] Torres, C., Existence of a solution for fractional forced pendulum, J. Appl. Math. Comput. Mech., 13, 1, 125-142 (2014) · Zbl 1473.34020 · doi:10.17512/jamcm.2014.1.13
[36] Torres, C., Boundary value problem with fractional \(p\)-Laplacian operator, Adv. Nonlinear Anal., 5, 2, 133-146 (2016) · Zbl 1337.26019
[37] Torres, C., Ground state solution for a class of differential equations with left and right fractional derivatives, Math. Methods Appl. Sci., 38, 5063-5073 (2015) · Zbl 1336.34018 · doi:10.1002/mma.3426
[38] Torres, C., Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 27, 314-327 (2015) · Zbl 1457.34015 · doi:10.1016/j.cnsns.2015.02.019
[39] Torres, C., Existence of solutions for fractional Hamiltonian systems with nonlinear derivative dependence in \({\mathbb{R}} \), J. Fract. Calc. Appl, 7, 2, 74-87 (2016) · Zbl 1499.37103
[40] Torres, C., Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 27, 1-3, 314-327 (2015) · Zbl 1457.34015 · doi:10.1016/j.cnsns.2015.02.019
[41] Torres, C.; Nyamoradi, N., Impulsive fractional boundary value problem with \(p\)-Laplace operator, J. Appl. Math. Comput., 55, 1-2, 257-278 (2017) · Zbl 1375.35614 · doi:10.1007/s12190-016-1035-6
[42] Torres, C., Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., 5, 1, 1-10 (2014) · Zbl 1499.34161
[43] Wang, J.; Zhou, Y., A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12, 262-272 (2011) · Zbl 1214.34010 · doi:10.1016/j.nonrwa.2010.06.013
[44] Xie, Z., Jin, Y., Hou, C.: Multiple solutions for a fractional difference boundary value problem via variational approach. Abstr. Appl. Anal. 2012 (2012) · Zbl 1259.39007
[45] Xu, J.; O’Regan, D.; Zhang, K., Multiple solutions for a class of fractional Hamiltonian systems, Fract. Calc. Appl. Anal., 18, 1, 48-63 (2015) · Zbl 1317.34016 · doi:10.1515/fca-2015-0005
[46] Zhang, Z.; Yuan, R., Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Methods Appl. Sci., 37, 13, 1873-1883 (2014) · Zbl 1300.34025 · doi:10.1002/mma.2941
[47] Zhang, Z.; Yuan, R., Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Methods Appl. Sci., 37, 18, 2934-2945 (2014) · Zbl 1307.34019 · doi:10.1002/mma.3031
[48] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), Singapore: World Scientific Publishing Co., Pte. Ltd., Singapore · Zbl 1336.34001 · doi:10.1142/9069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.