×

New theories and applications of tempered fractional differential equations. (English) Zbl 1537.34017

Summary: In this paper, we develop theories, properties and applications of a new technique in tempered fractional calculus called the Tempered Fractional Natural Transform Method. This method can be used to solve a myriad of problems in tempered fractional linear and nonlinear ordinary and partial differential equations in both the Caputo and Riemann-Liouville senses. We prove some theorems and establish related properties of the Tempered Fractional Natural Transform Method. We give exact solutions, with graphical illustrations, to three well-known problems in tempered fractional differential equations including a special case of Langevin equation. Our results are the first rigorous proofs of Tempered Fractional Natural Transform Method. Further, the present work can be considered as an alternative to existing techniques, and will have wide applications in science and engineering fields.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
35Q79 PDEs in connection with classical thermodynamics and heat transfer
45A05 Linear integral equations
45B05 Fredholm integral equations
45D05 Volterra integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[2] Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific (2014) · Zbl 1293.26001
[3] Hilfer, R. ed.: Applications of Fractional Calculus in Physics. World scientific (2000) · Zbl 0998.26002
[4] Caputo, M., Elasticità e Dissipazione (1969), Bologna: Italy, Zanichelli, Bologna
[5] Hendy, A.S., Zaky, M.A.: Combined Galerkin spectral/finite difference method over graded meshes for the generalized nonlinear fractional Schrödinger equation. Nonlinear Dyn. 1-15, (2021)
[6] Roy, R.; Akbar, MA; Wazwaz, AM, Exact wave solutions for the nonlinear time fractional Sharma-Tasso-Olver equation and the fractional Klein-Gordon equation in mathematical physics, Opt. Quant. Electron., 50, 1, 25 (2018) · doi:10.1007/s11082-017-1296-9
[7] Sabzikar, F.; Meerschaert, MM; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28 (2015) · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[8] Baeumer, B.; Meerschaert, MM, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math., 233, 10, 2438-2448 (2010) · Zbl 1423.60079 · doi:10.1016/j.cam.2009.10.027
[9] Frisch, U., Kolmogorov, A.N.: Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press (1995) · Zbl 0832.76001
[10] Koponen, A.; Kataja, M.; Timonen, JV, Tortuous flow in porous media, Phys. Rev. E, 54, 1, 406 (1996) · doi:10.1103/PhysRevE.54.406
[11] Mantegna, RN; Stanley, HE, Scaling behaviour in the dynamics of an economic index, Nature, 376, 6535, 46-49 (1995) · doi:10.1038/376046a0
[12] Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, vol. 43. Walter de Gruyter GmbH & Co KG (2019) · Zbl 1490.60004
[13] Cartea, A., del Castillo-Negrete D.: Fractional diffusion models of option prices in markets with jumps. Phys. A Stat. Mech. Appl. 374(2), 749-63 (2007)
[14] Sabzikar, F.; Surgailis, D., Tempered fractional Brownian and stable motions of second kind, Stat. Prob. Lett., 132, 17-27 (2018) · Zbl 1380.60047 · doi:10.1016/j.spl.2017.08.015
[15] Moghaddam, BP; Machado, JT; Babaei, A., A computationally efficient method for tempered fractional differential equations with application, Comput. Appl. Math., 37, 3, 3657-3671 (2018) · Zbl 1405.65092 · doi:10.1007/s40314-017-0522-1
[16] Sun, X.; Zhao, F.; Chen, S., Numerical algorithms for the time-space tempered fractional Fokker-Planck equation, Adv. Diff. Equ., 1, 1-7 (2017) · Zbl 1422.65183
[17] Deng, J., Ma, W., Deng, K., Li, Y.: Tempered Mittag-Leffler stability of tempered fractional dynamical systems. Math. Probl. Eng. (2020) · Zbl 07348279
[18] Liemert, A., Kienle, A.: Fundamental solution of the tempered fractional diffusion equation. J. Math. Phys. 56(11), (2015) · Zbl 1328.35278
[19] Wei, L., He, Y.: A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. arXiv preprint arXiv:2001.00169 (2020) · Zbl 1476.65256
[20] Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. arXiv preprint arXiv:1501.00376 (2015)
[21] Deng, J.; Zhao, L.; Wu, Y., Fast predictor-corrector approach for the tempered fractional differential equations, Numer. Algo., 74, 3, 717-754 (2017) · Zbl 1364.65142 · doi:10.1007/s11075-016-0169-9
[22] Zhao, L., Deng, W., Hesthaven, J.S.: Spectral methods for tempered fractional differential equations. (2016)
[23] Lu, B.; Zhang, Y.; Reeves, DM; Sun, H.; Zheng, C., Application of tempered-stable time fractional-derivative model to upscale subdiffusion for pollutant transport in field-scale discrete fracture networks, Mathematics, 6, 1, 5 (2018) · Zbl 1404.76282 · doi:10.3390/math6010005
[24] Alrawashdeh, MS; Kelly, JF; Meerschaert, MM; Scheffler, HP, Applications of inverse tempered stable subordinators, Comput. Math. Appl., 73, 6, 892-905 (2017) · Zbl 1409.60058 · doi:10.1016/j.camwa.2016.07.026
[25] Rawashdeh, M.S.: An efficient approach for time-fractional damped Burger and time-sharma-tasso-Olver equations using the FRDTM. Appl. Math. Inform. Sci. 9(3),1239 (2015)
[26] Rawashdeh, MS, The fractional natural decomposition method: theories and applications, Math. Methods Appl. Sci., 40, 7, 2362-2376 (2017) · Zbl 1367.35076 · doi:10.1002/mma.4144
[27] Rawashdeh, MS; Al-Jammal, H., Numerical solutions for systems of nonlinear fractional ordinary differential equations using the FNDM, Mediterr. J. Math., 13, 6, 4661-4677 (2016) · Zbl 1355.65090 · doi:10.1007/s00009-016-0768-7
[28] Sejdić, E.; Djurović, I.; Stanković, L., Fractional Fourier transform as a signal processing tool: An overview of recent developments, Sig. Process., 91, 6, 1351-69 (2011) · Zbl 1220.94024 · doi:10.1016/j.sigpro.2010.10.008
[29] Zhao, W.; Maitama, S., Beyond sumudu transform and natural transform: \({{\mathbb{J}}} \)-transform properties and applications, J. Appl. Anal. Comput., 10, 4, 1223-41 (2020) · Zbl 1475.44001
[30] Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711-3716 (2020)
[31] Kaur, L.; Wazwaz, AM, Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation, Nonlinear Dyn., 94, 4, 2469-2477 (2018) · Zbl 1422.37047 · doi:10.1007/s11071-018-4503-8
[32] Mittag-Leffler, G.M.: Sur la nouvelle fonction \({\rm E}_\alpha \left(x\right)\). CR Acad. Sci. Paris 137(2), 554-558 (1903) · JFM 34.0435.01
[33] Belgacem, F.B.M., Silambarasan, R.: Maxwell’s equations by means of the natural transform. Math. Eng. Sci. Aerosp. 3, 313-323 (2012) · Zbl 1269.35042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.