×

A transformed \(L 1\) method for solving the multi-term time-fractional diffusion problem. (English) Zbl 1540.65435

Summary: In this paper, we present a novel scheme for solving a time-fractional initial-boundary value problem, where the equation contains a sum of Caputo derivatives with orders between 0 and 1. In order to overcome the difficulty of initial layer, we introduce a change of variable in the temporal direction and investigate the regularity of the solutions of the resulting system. A modified \(L 1\) approximation is used to approximate the Caputo derivatives and a standard Galerkin-Spectral method is applied to approximate the spatial derivatives. Unconditional stability and convergence of the fully-discrete scheme are proved by applying a novel discrete fractional Grönwall inequality. Finally, numerical examples are given to confirm our theoretical results.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bagley, R. L.; Torvik, P. J., On the appearance of the fractional derivative in the behaviour of real materials, J. Appl. Mech., 51, 294-298 (1984) · Zbl 1203.74022
[2] Berge, C., Principles of Combinatorics (1971), Academic Press: Academic Press New York · Zbl 0227.05002
[3] Bhrawy, A. H.; Zaky, M. A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281, 876-895 (2015) · Zbl 1352.65386
[4] Courant, R.; Hilbert, D.; Bergmann, P., Methods of Mathematical Physics (1953), Interscience Publishers, Inc.: Interscience Publishers, Inc. New York · Zbl 0053.02805
[5] Cuesta, E.; Lubich, C.; Palencia, C., Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75, 673-696 (2006) · Zbl 1090.65147
[6] Dehghan, M.; Safarpoor, M.; Abbaszadeh, M., Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math., 290, 174-195 (2015) · Zbl 1321.65129
[7] Diethelm, K., The Analysis of Fractional Differential Equations (2010), Springer: Springer Berlin · Zbl 1215.34001
[8] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model., 35, 5562-5672 (2011) · Zbl 1228.65126
[9] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0456.35001
[10] Huang, C.; Liu, X.; Meng, X.; Stynes, M., Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem, Comput. Methods Appl. Math., 20, 815-825 (2020) · Zbl 1451.65146
[11] Huang, C.; Stynes, M., Superconvergence of a finite element method for the multi-term time-fractional diffusion problem, J. Sci. Comput., 82 (2020) · Zbl 1447.65078
[12] Jiang, H.; Liu, F.; Turner, I.; Burrage, K., Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl., 64, 3377-3388 (2012) · Zbl 1268.35124
[13] Jin, B.; Lazarov, R.; Liu, Y.; Zhou, Z., The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281, 825-843 (2015) · Zbl 1352.65350
[14] Jin, B.; Li, B.; Zhou, Z., Subdiffusion with a time-dependent coefficient: analysis and numerical solution, Math. Comp., 88, 319, 2157-2186 (2019) · Zbl 1417.65205
[15] Kolk, M.; Pedas, A.; Tamme, E., Modified spline collocation for linear fractional differential equations, J. Comput. Appl. Math., 283, 28-40 (2015) · Zbl 1311.65094
[16] Kolk, M.; Pedas, A.; Tamme, E., Smoothing transformation and spline collocation for linear fractional boundary value problems, Appl. Math. Comput., 283, 234-250 (2016) · Zbl 1410.65284
[17] Li, Z.; Liu, Y.; Yamamoto, M., Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput., 237, 281-397 (2015) · Zbl 1338.35471
[18] Li, D.; Sun, W.; Wu, C., A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions, Numer. Math. Theory Methods Appl., 14, 355-376 (2021) · Zbl 1488.65256
[19] Li, D.; Wu, C.; Zhang, Z., Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non \(-\) smooth solutions in time direction, J. Sci. Comput., 80, 403-419 (2019) · Zbl 1418.65179
[20] Li, D.; Zhang, C., Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simul., 172, 244-257 (2020) · Zbl 1482.34189
[21] Liu, F.; Meerschaert, M.; McGough, R.; Zhuang, P.; Liu, Q., Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 16, 9-25 (2013) · Zbl 1312.65138
[22] Luchko, Y., Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374, 538-548 (2011) · Zbl 1202.35339
[23] Luchko, Y.; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math., 24, 207-233 (1999) · Zbl 0931.44003
[24] Pedas, A.; Vainikko, G., Smoothing transformation and piecewise polynomial collocation for weakly singular volterra integral equations, Computing, 73, 271-293 (2004) · Zbl 1063.65147
[25] Podlubny, I., Fractional Differential Equations (1999), Academic Press, Inc.: Academic Press, Inc. San Diego · Zbl 0918.34010
[26] Qin, H.; Li, D.; Zhang, Z., A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations, J. Sci. Comput., 89, Article 65 pp. (2021) · Zbl 1481.65151
[27] Rashidinia, J.; Mohmedi, E., Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations, J. Comput. Appl. Math., 39 (2020) · Zbl 1463.65327
[28] She, M.; Li, L.; Tang, R.; Li, D., A novel numerical scheme for a time fractional Black-Scholes equation, J. Appl. Math. Comput., 66, 853-870 (2021) · Zbl 1479.91446
[29] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer: Springer Berlin · Zbl 1227.65117
[30] Shiralashetti, S. C.; Deshi, A. B., An efficient haar wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dynam., 83, 293-303 (2016)
[31] Srivastava, V.; Rai, K. N., A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51, 616-624 (2010) · Zbl 1190.35226
[32] Stynes, M.; Oriordan, E.; Gracia, J. L., Error analysis of a finite difference method on graded meshes for a time fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089
[33] Sun, H.; Zhao, X.; Sun, Z. Z., The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation, J. Sci. Comput., 78, 467-498 (2019) · Zbl 1437.35696
[34] Zaky, M., A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, J. Comput. Appl. Math., 37, 3525-3538 (2018) · Zbl 1404.65204
[35] Zeng, F.; Zhang, Z.; Karniadakis, G., Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Methods Appl. Math., 327, 478-502 (2017) · Zbl 1439.65081
[36] Zhao, Y.; Zhang, Y.; Liu, F.; Turner, I.; Tang, Y.; Anh, V., Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations, Comput. Math. Appl., 73, 1087-1099 (2017) · Zbl 1412.65159
[37] Zheng, M.; Liu, F.; Anh, V.; Turner, I., A high-order spectral method for the multi-term time-fracitonal diffusion equations, Appl. Math. Model., 40, 4970-4985 (2016) · Zbl 1459.65205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.