×

Long time numerical behaviors of fractional pantograph equations. (English) Zbl 1482.34189

Summary: This paper is concerned with long time numerical behaviors of nonlinear fractional pantograph equations. The L1 method with the linear interpolation procedure is applied to solve these nonlinear problems. It is proved that the proposed numerical scheme can inherit the long time behavior of the underlying problems without any stepsize restrictions. After that, the fast evaluation is presented to speed up the calculation of the Caputo fractional derivative. Numerical examples are shown to confirm the theoretical results. Besides, several counter-examples are also given to show that not all the numerical methods can inherit the long time behavior of the underlying problems.

MSC:

34K37 Functional-differential equations with fractional derivatives
65L03 Numerical methods for functional-differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L07 Numerical investigation of stability of solutions to ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Balachandran, K.; Kiruthika, S.; Trujillo, J. J., Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33B, 712-720 (2013) · Zbl 1299.34009
[2] Chen, X.; Di, Y.; Duan, J.; Li, D., Linearized compact ADI schemes for nonlinear time-fractional Schrödinger equations, Appl. Math. Lett., 84, 160-167 (2018) · Zbl 1473.65097
[3] Cheng, X.; Duan, J.; Li, D., A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations, Appl. Math. Comput., 346, 452-464 (2019) · Zbl 1429.65216
[4] Deng, W.; Li, C.; Lü, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48, 409-416 (2007) · Zbl 1185.34115
[5] Gan, S., Exact and discretized dissipativity of the pantograph equation, J. Comput. Math., 25, 81-88 (2007) · Zbl 1142.65375
[6] Gan, S., Dissipativity of \(\theta \)-methods for nonlinear delay differential equations of neutral type, Appl. Numer. Math., 59, 1354-1365 (2009) · Zbl 1166.65036
[7] Gao, G.; Sun, Z., A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), 586-565 · Zbl 1211.65112
[8] Greengard, L.; Strain, J., A fast algorithm for the evaluation of heat potentials, Comm. Pure Appl. Math., 43, 949-963 (1990) · Zbl 0719.65074
[9] Hill, A. T., Global dissipativity for A-stable methods, SIAM J. Numer. Anal., 34, 119-142 (1997) · Zbl 0870.65073
[10] Huang, C., Dissipativity of Runge-Kutta methods for dynamical systems with delays, IMA J. Numer. Anal., 20, 153-166 (2000) · Zbl 0944.65134
[11] Jiang, S.; Greengard, L.; Wang, S., Efficient sum-of-exponentials approximations for the heat kernel and their applications, Adv. Comput. Math., 41, 529-551 (2015) · Zbl 1318.31010
[12] Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 650-678 (2017) · Zbl 1488.65247
[13] Jin, B.; Lazarov, R.; Zhou, Z., Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51, 445-466 (2013) · Zbl 1268.65126
[14] Jin, B.; Li, B.; Zhou, Z., Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39, 3129-3152 (2017) · Zbl 1379.65078
[15] Jin, B.; Li, B.; Zhou, Z., Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint, IMA J. Numer. Anal. (2019)
[16] Jin, B.; Li, B.; Zhou, Z., Subdiffusion with a time-dependent coefficient: analysis and numerical solution, Math. Comp. (2019) · Zbl 1417.65205
[17] Kaslik, E.; Sivasundaram, S., Analytical and numerical methods for the stability analysis of linear fractional delay differential equations, J. Comput. Appl. Math., 236, 4027-4041 (2012) · Zbl 1250.65099
[18] Lakshmikantham, V., Theory of fractional functional differential equations, Nonlinear Anal. TMA, 69, 3337-3343 (2008) · Zbl 1162.34344
[19] Lazarević, M. P.; Spasić, A. M., Finite-time stability analysis of fractional order time delay systems: Gronwall’s approach, Math. Comput. Model., 49, 475-481 (2009) · Zbl 1165.34408
[20] Lean, W. M., Fast summation by interval clustering for an evolution equation with memory, SIAM J. Numer. Anal., 34, 6, 3039-3056 (2012) · Zbl 1276.65059
[21] Li, L.; Li, D., Exact solutions and numerical study of time fractional Burgers’ equations, Appl. Math. Lett., 100, Article 106011 pp. (2020) · Zbl 1427.35330
[22] Li, D.; Liao, H.; Sun, W.; Wang, J.; Zhang, J., Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems, Commu. Comput. Phys., 24, 86-103 (2018) · Zbl 1488.65431
[23] Li, D.; Wang, J.; Zhang, J., Unconditionally convergent \(L 1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations, SIAM. J. Sci. Comput., 39, 3067-3088 (2017) · Zbl 1379.65079
[24] Li, D.; Wu, C.; Zhang, Z., Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80, 403-419 (2019) · Zbl 1418.65179
[25] Li, D.; Zhang, C., Nonlinear stability of discontinuous Galerkin methods for delay differential equations, Appl. Math. Lett., 23, 457-461 (2010) · Zbl 1191.65111
[26] Li, D.; Zhang, C., Split Newton iterative algorithm and its application, Appl. Math. Comput., 217, 2260-2265 (2010) · Zbl 1202.65066
[27] Li, D.; Zhang, J.; Zhang, Z., Unconditionally optimal error estimates of a linearized Galerkin method for the nonlinear fractional reaction-subdiffusion equations, J. Sci. Comput., 76, 848-866 (2018) · Zbl 1397.65173
[28] Luo, H.; Li, B.; Xie, X., Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data, J. Sci. Comput., 80, 957-992 (2019) · Zbl 1477.65161
[29] Morgado, M. L.; Ford, N. J.; Lima, P. M., Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252, 159-168 (2013) · Zbl 1291.65214
[30] Oldham. J. Spanier, K. B., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004
[31] Si-Ammour, A.; Djennoune, S.; Bettayeb, M., A sliding mode control for linear fractional systems with input and state delays, Commun. Nonlinear Sci. Numer. Simul., 14, 2310-2318 (2009) · Zbl 1221.93048
[32] Stynes, M.; Riordan, E. O.; Grace, J. L., Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089
[33] Sun, Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193-209 (2006) · Zbl 1094.65083
[34] Wang, W., Uniform ultimate boundedness of numerical solutions to nonlinear neutral delay differential equations, J. Comput. Appl. Math, 309 (2017) · Zbl 1352.65174
[35] Wang, D.; Xiao, A.; Liu, H., Dissipativity and stability analysis for fractional functional differential equations, Fract. Calc. Appl. Anal., 18, 1399-1422 (2015) · Zbl 1348.34136
[36] Wang, D.; Xiao, A.; Zou, J., Long-time behavior of numerical solutions to nonlinear fractional ODEs (2018)
[37] Wang, W.; Zhang, C., Analytical and numerical dissipativity for nonlinear generalized pantograph equations, Discrete Contin. Dyn. Syst., 29, 1245-1260 (2011) · Zbl 1225.65068
[38] Wen, L.; Li, S., Dissipativity of Volterra functional differential equations, J. Math. Anal. Appl., 324, 696-706 (2006) · Zbl 1110.34056
[39] Wen, L.; Wang, W.; Yu, Y., Dissipativity and asymptotic stability of nonlinear neutral delay integro-differential equations, Nonlinear Anal. TMA, 72, 1746-1754 (2010) · Zbl 1220.45008
[40] Yan, Y.; Kou, C., Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay, Math. Comput. Simul., 82, 1572-1585 (2012) · Zbl 1253.92037
[41] Ye, H.; Gao, J., Henry-gronwall type retarded integral inequalities and their applications to fractional differential equations with delay, Appl. Math. Comput., 218, 4152-4160 (2011) · Zbl 1247.26043
[42] Yuan, L.; Yang, Q.; Zeng, C., Chaos detection and parameter identification in fractional-order chaotic systems with delay, Nonlinear Dynam., 73, 439-448 (2013) · Zbl 1281.93037
[43] Zayernouri, M.; Cao, W.; Zhang, Z.; Karniadakis, G. E., Spectral and discontinuous spectral element methods for fractional delay equations, SIAM J. Sci. Comput., 36, 904-929 (2014) · Zbl 1314.34159
[44] Zhang, C.; Li, S., Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations, Appl. Math. Comput., 119, 109-115 (2001) · Zbl 1030.34067
[45] Zhang, C.; Sun, G., The discrete dynamics of nonlinear infinite-delay-differential equations, Appl. Math. Lett., 15, 521-526 (2002) · Zbl 1001.65091
[46] Zhang, Y.; Sun, Z.; Liao, H., Finite difference methods for time fractional diffusion equations on no-uniform meshes, J. Comput. Phys., 265, 195-210 (2014) · Zbl 1349.65359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.