×

Modified spline collocation for linear fractional differential equations. (English) Zbl 1311.65094

Summary: We propose and analyze a class of high order methods for the numerical solution of initial value problems for linear multi-term fractional differential equations involving Caputo-type fractional derivatives. Using an integral equation reformulation of the initial value problem we first regularize the solution by a suitable smoothing transformation. After that we solve the transformed equation by a piecewise polynomial collocation method on a mildly graded or uniform grid. Optimal global convergence estimates are derived and a superconvergence result for a special choice of collocation parameters is established. Theoretical results are verified by some numerical examples.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34A30 Linear ordinary differential equations and systems
34A08 Fractional ordinary differential equations
65R20 Numerical methods for integral equations
45D05 Volterra integral equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Diethelm, K., (The Analysis of Fractional Differential Equations. The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, vol. 2004 (2010), Springer: Springer Berlin) · Zbl 1215.34001
[2] Brunner, H.; Pedas, A.; Vainikko, G., Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39, 957-982 (2001) · Zbl 0998.65134
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., (Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier: Elsevier Amsterdam) · Zbl 1092.45003
[4] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[5] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon · Zbl 0818.26003
[6] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional equations and inclusion, Acta Appl. Math., 109, 973-1033 (2010) · Zbl 1198.26004
[7] Diethelm, K., An efficient parallel algorithm for the numerical solution of fractional differential equations, Fract. Calc. Appl. Anal., 14, 475-490 (2011) · Zbl 1273.65101
[8] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus. Models and Numerical Methods (2012), World Scientific: World Scientific Singapore · Zbl 1248.26011
[9] Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Ezz-Eldien, S. S., On shifted Jacobi spectral approximations for solving fractional differential equations, Appl. Math. Comput., 8042-8056 (2013) · Zbl 1291.65207
[10] Eslahchi, M. R.; Dehghan, M.; Parvizi, M., Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math., 257, 105-128 (2014) · Zbl 1296.65106
[11] Ma, X.; Huang, C., Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model., 38, 1434-1448 (2014) · Zbl 1427.65421
[12] Pedas, A.; Tamme, E., Piecewise polynomial collocation for linear boundary value problems of fractional differential equations, J. Comput. Appl. Math., 236, 3349-3359 (2012) · Zbl 1245.65104
[13] Pedas, A.; Tamme, E., Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255, 216-230 (2014) · Zbl 1291.65247
[14] Pedas, A.; Tamme, E., Spline collocation for nonlinear fractional boundary value problems, Appl. Math. Comput., 244, 502-513 (2014) · Zbl 1337.65106
[15] Yan, Y.; Pal, K.; Ford, N. J., Higher order numerical methods for solving fractional differential equations, BIT, 54, 555-584 (2014) · Zbl 1304.65173
[16] Brunner, H.; van der Houven, P. J., The Numerical Solution of Volterra Equations (1986), North-Holland: North-Holland Amsterdam · Zbl 0611.65092
[17] Brunner, H., (Collocation Methods for Volterra Integral and Related Functional Equations. Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Monographs on Applied and Computtational Mathematics, vol. 15 (2004), Cambridge University Press: Cambridge University Press Cambridge, UK) · Zbl 1059.65122
[18] Brunner, H.; Pedas, A.; Vainikko, G., The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math. Comp., 227, 1079-1095 (1999) · Zbl 0941.65136
[19] Pedas, A.; Tamme, E., On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235, 3502-3514 (2011) · Zbl 1217.65154
[20] Pedas, A.; Tamme, E., Spline collocation methods for linear multi-term fractional differential equations, J. Comput. Appl. Math., 236, 167-176 (2011) · Zbl 1229.65138
[21] Cao, Y.; Herdman, T.; Xu, Y., A hybrid collocation method for Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal., 41, 364-381 (2003) · Zbl 1042.65106
[22] Brunner, H., Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J. Numer. Anal., 20, 1106-1119 (1983) · Zbl 0533.65087
[23] Ford, N. J.; Morgado, M. L.; Rebelo, M., Nonpolynomial collocation approximation of solutions to fractional differential equations, Fract. Calc. Appl. Anal., 16, 874-891 (2013) · Zbl 1312.65124
[24] Huang, M.; Xu, Y., Superconvergence of the iterated hybrid collocation method for weakly singular Volterra integral equations, J. Integral Equations Appl., 18, 83-116 (2006) · Zbl 1141.65091
[25] Ma, X.; Huang, C., Numerical solution of fractional integro-differential equations by a hybrid collocation method, Appl. Math. Comput., 219, 6750-6760 (2013) · Zbl 1290.65130
[26] Diogo, T.; McKee, S.; Tang, T., Collocation methods for second-kind Volterra integral equations with weakly singular kernels, Proc. Roy. Soc. Edinburgh, 124A, 199-210 (1994) · Zbl 0807.65141
[27] Baratella, P.; Orsi, A. P., A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 163, 401-418 (2004) · Zbl 1038.65144
[28] Zhao, J.; Xiao, J.; Ford, N. J., Collocation methods for fractional integro-differential equations with weakly singular kernels, Numer. Algorithms, 65, 723-743 (2014) · Zbl 1298.65197
[29] Vainikko, G., (Multidimensional Weakly Singular Integral Equations. Multidimensional Weakly Singular Integral Equations, Lecture Notes in Mathematics, vol. 1549 (1993), Springer: Springer Berlin) · Zbl 0789.65097
[30] Pedas, A.; Vainikko, G., Numerical solution of weakly singular Volterra integral equations with change of variables, Proc. Estonian Acad. Sci. Phys. Math., 53, 99-106 (2004) · Zbl 1065.65149
[31] Pedas, A.; Vainikko, G., Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations, Computing, 73, 271-293 (2004) · Zbl 1063.65147
[32] Kolk, M.; Pedas, A., Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity, Math. Model. Anal., 14, 79-89 (2009) · Zbl 1193.65221
[33] Kolk, M.; Pedas, A.; Vainikko, G., High-order methods for Volterra integral equations with general weak singularities, Numer. Funct. Anal. Optim., 30, 1002-1024 (2009) · Zbl 1187.65145
[34] Kolk, M.; Pedas, A., Numerical solution of Volterra integral equations with singularities, Front. Math. China, 8, 239-259 (2013) · Zbl 1273.65197
[35] Kolk, M., Piecewise polynomial collocation for Volterra integral equation with singularities (2010), Tartu University Press, Dissertation (Ph.D.) · Zbl 1364.65294
[36] Tamme, E., Numerical computation of weakly singular integrals, Proc. Estonian Acad. Sci. Phys. Math., 49, 215-224 (2000) · Zbl 0973.65017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.