×

Existence of a weak solution to a steady 2D fluid-1D elastic structure interaction problem with Tresca slip boundary condition. (English) Zbl 1540.35281

Summary: We study a steady state fluid-structure interaction problem between an incompressible viscous Newtonian fluid and an elastic structure using a nonlinear boundary condition of friction type on the fluid-structure interface. This condition, also known as Tresca slip boundary condition, allows the fluid to slip on the interface when the tangential component of the fluid shear stress attains a certain threshold function. The governing equations are the \(2D\) Stokes equations for the fluid, written in an unknown domain depending on the structure displacement, and the \(1D\) Euler-Bernoulli model for the structure. We prove that there exists a weak solution of this nonlinear coupled problem by designing a proof based on the Schauder fixed-point theorem. The theoretical result will be illustrated with a numerical example.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York NY, San Francisco CA, London · Zbl 0314.46030
[2] M. Ayadi, H. Ayed, L. Baffico, T. Sassi, Stokes problem with slip boundary condition of friction type: Error analysis of a four-field mixed variational formulation, J. Sci. Comput. 81(1) 312-341. · Zbl 1427.65348
[3] Baffico, L.; Sassi, T., Existence result for a fluid structure interaction problem with friction type slip boundary condition, ZAMM Z. Angew. Math. Mech., 95, 8, 831-844 (2015) · Zbl 1329.35239
[4] Boulakia, M.; Schwindt, E.; Takahashi, T., Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, Interfaces Free Bound., 14, 3, 273-306 (2012) · Zbl 1260.35258
[5] Boyer, F.; Fabrie, P., Mathematical Tools for the Study of Incompressible Navier-Stokes Equation and Related Models, Vol. 183 (2013), Springer · Zbl 1286.76005
[6] Brenner, H.; Cox, F., The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers, J. Fluid Mech., 17, 561-595 (1963) · Zbl 0116.18003
[7] Brezis, H., Analyse Fonctionnelle. Théorie et Applications (1983), Masson: Masson Paris · Zbl 0511.46001
[8] Bălilescu, L.; San Martín, J.; Takahashi, T., Fluid-rigid structure interaction system with Coulomb’s law, SIAM J. Math. Anal., 49, 6, 4625-4657 (2017) · Zbl 1386.35320
[9] Casanova, J.-J., Fluid structure system with boundary condition involving the pressure (2018), https://hal.archives-ouvertes.fr/hal-01838242
[10] Chambolle, A.; Desjardins, B.; Esteban, M.; Grandmont, C., Existence of weak solutions for an unsteady fluid-plate interaction problem, J. Math. Fluid Mech., 7, 368-404 (2005) · Zbl 1080.74024
[11] Ciarlet, P. G., Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity (1988), North-Holl, Publishing Co.: North-Holl, Publishing Co. Amsterdam · Zbl 0648.73014
[12] Desjardins, B.; Esteban, M. J., Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146, 1, 59-71 (1999) · Zbl 0943.35063
[13] Djebour, I. A.; Takahashi, T., On the existence of strong solutions to a fluid structure interaction problem with Navier boundary condition, J. Math. Fluid Mech., 21, 36 (2019) · Zbl 1421.35242
[14] Fujita, H., A mathematical analysis of motions of viscous incompressible fluid under leak and slip boundary conditions, Math. Fluid Mech. Model., 888, 199-216 (1994) · Zbl 0939.76527
[15] Fujita, H., A coherent analysis of Stokes flows under boundary conditions of friction type, J. Comput. Appl. Math., 149, 57-69 (2002) · Zbl 1058.76023
[16] Gérard-Varet, D.; Hillairet, M., Existence of weak solutions up to collision for viscous fluid-solid systems with slip, Comm. Pure Appl. Math., 67, 2022-2075 (2014) · Zbl 1307.35193
[17] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0562.35001
[18] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0585.65077
[19] Grandmont, C., Existence and uniqueness for a two-dimensional steady-state fluid -structure interaction problem, C. R. Acad. Sci. Paris Sér. I Math., 326, 651-656 (1998) · Zbl 0919.73139
[20] Grandmont, C.; Hillairet, M., Existence of global strong solutions to a beam-fluid interaction system, Arch. Ration. Mech. Anal., 220, 1283-1333 (2016) · Zbl 1334.35232
[21] Grisvard, P., (Elliptic Problems in Nonsmooth Domains. Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24 (1985), Pitman (Advanced Publishing Program): Pitman (Advanced Publishing Program) Boston, MA) · Zbl 0695.35060
[22] Haslinger, J.; Hlaváček, J.; Nečas, J., Numerical methods for unilateral problems in solid mechanics, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis. Handbook of Numerical Analysis, Finite Element Methods (Part 2)-Numerical Methods for Solids (Part 2), vol. IV (1996), Elsevier Science B.V.) · Zbl 0873.73079
[23] Haslinger, J.; Stebel, J., Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains, ZAMM Z. Angew. Math. Mech., 96, 9, 1049-1060 (2016) · Zbl 1538.49055
[24] Hatzikiriakos, S. G.; Dealy, J. M., Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies, J. Rheol., 35, 4, 497-523 (1991)
[25] Howell, J. S.; Walkington, N. J., Inf-sup conditions for twofold saddle point problems, Numer. Math., 118, 4, 663-693 (2011) · Zbl 1230.65128
[26] Kashiwabara, T., Finite element method for Stokes equations under leak boundary condition of friction type, SIAM J. Numer. Anal., 51, 4, 2448-2469 (2013) · Zbl 1311.76061
[27] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity (1988), SIAM: SIAM Philadelphia · Zbl 0685.73002
[28] Kozicki, W.; Chou, C. H.; Tiu, C., Non-Newtonian flow in ducts of arbitrary cross-sectional shape, Chem. Eng. Sci., 21, 8, 665-679 (1966)
[29] Lions, J.-L.; Magenes, E., Problèmes aux Limites non Homogènes, Vol. 1 (1968), Dunod: Dunod Paris · Zbl 0165.10801
[30] Migler, K. B.; Hervet, H.; Leger, L., Slip transition of a polymer melt under shear stress, Phys. Rev. Lett., 70, 3, 267-270 (1993)
[31] Muha, B.; Canić, S., Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207, 3, 919-968 (2013) · Zbl 1260.35148
[32] Muha, B.; Canić, S., Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differential Equations, 260, 12, 8550-8589 (2016) · Zbl 1341.35103
[33] Nubar, Y., Blood flow, slip, and viscometry, Biophys. J., 11, 253-267 (1971)
[34] Raymond, J.-P.; Vanninathan, M., A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures Appl. (9), 102, 3, 546-596 (2014) · Zbl 1303.35060
[35] Saito, N., On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions, Publ. Res. Inst. Math. Sci., 40, 2, 345-383 (2004); Errata Publ. Res. Inst. Math. Sci., 48, 2, 475-476 (2012) · Zbl 1244.35061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.