×

Existence of weak solutions up to collision for viscous fluid-solid systems with slip. (English) Zbl 1307.35193

This paper is a step forward related with a previous result of the authors [ESAIM, Math. Model. Numer. Anal. 46, No. 5, 1201–1224 (2012; Zbl 1267.76020)] where the collision paradox was solved for a Stokes fluid, by using the Navier boundary conditions (instead of no-slip boundary conditions) on the fluid-solid interface. In the present paper the analysis is extended to a Navier-Stokes fluid. The main purpose is to define and obtain the existence for a weak solution in the case of Navier boundary conditions. The test functions are discontinuous on the fluid-solid interface. Moreover, the notion of weak solution is restricted to configurations up to collision, to avoid possible cuspoidal fluid configurations. The corresponding approximate solutions are considered, whose resolution is carried out through a Galerkin scheme. The main result is the existence of a weak Leray-type solution, up to collision, in the 3-D case.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35D30 Weak solutions to PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Citations:

Zbl 1267.76020

References:

[1] Bost, C.; Cottet, G.-H.; Maitre, E.Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid. SIAM J. Numer. Anal.48 (2010), no. 4, 1313-1337. doi: 10.1137/090767856 · Zbl 1213.35335
[2] Brenner, H.; Cox, R. G.The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech.17 (1963), 561-595. doi: 10.1017/S002211206300152X · Zbl 0116.18003
[3] Cooley, M. D. A.; O’Neill, M. E.On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika16 (1969), no. 1, 37-49. doi: 10.1112/S0025579300004599 · Zbl 0174.27703
[4] Desjardins, B..; Esteban, M. J.Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal.146 (1999), no. 1, 59-71. doi: 10.1007/s002050050136 · Zbl 0943.35063
[5] DiPerna, R. J.; Lions, P.-L.Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math.98 (1989), no. 3, 511-547. doi: 10.1007/BF01393835 · Zbl 0696.34049
[6] Feireisl, E.On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ.3 (2003), no. 3, 419-441. doi: 10.1007/s00028-003-0110-1 · Zbl 1039.76071
[7] Galdi, G. P. An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Second edition. Springer Monographs in Mathematics. Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9 · Zbl 1245.35002
[8] Gérard-Varet, D.; Hillairet, M.Regularity issues in the problem of fluid structure interaction. Arch. Ration. Mech. Anal.195 (2010), no. 2, 375-407. doi: 10.1007/s00205-008-0202-9 · Zbl 1192.35131
[9] Gérard-Varet, D.; Hillairet, M.Computation of the drag force on a sphere close to a wall: the roughness issue. ESAIM Math. Model. Numer. Anal.46 (2012), no. 5, 1201-1224. doi: 10.1051/m2an/2012001 · Zbl 1267.76020
[10] Glass, O.; Sueur, F.Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Preprint, 2012. arxiv: 1203.2894 [math.AP]
[11] Henrot, A.; Pierre, M.Variation et optimisation de formes. Mathématiques & Applications (Berlin), 48. Springer, Berlin, 2005. · Zbl 1098.49001
[12] Hillairet, M.Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm. Partial Differential Equations32 (2007), no. 7-9, 1345-1371. doi: 10.1080/03605300601088740 · Zbl 1221.35279
[13] Hillairet, M.; Takahashi, T.Collisions in three-dimensional fluid structure interaction problems. SIAM J. Math. Anal.40 (2009), no. 6, 2451-2477. doi: 10.1137/080716074 · Zbl 1178.35291
[14] Hocking, L. M.The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Eng. Mech.7 (1973), no. 3, 207-221. doi: 10.1007/BF01535282 · Zbl 0263.76066
[15] Lauga, E.; Brenner, M. P.; Stone, H. A.Microfluidics: The no-slip boundary condition. Handbook of Experimental Fluid Dynamics, 1219-1240. Springer, New York, 2007.
[16] Lions, P.-L.Mathematical topics in fluid mechanics. Vol. 1. Oxford Lecture Series in Mathematics and Its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996. · Zbl 0866.76002
[17] Marchioro, C.; Pulvirenti, M.Mathematical theory of incompressible nonviscous fluids. Applied Mathematical Sciences, 96. Springer, New York, 1994. doi: 10.1007/978-1-4612-4284-0 · Zbl 0789.76002
[18] Nitsche, J. A.On Korn’s second inequality. RAIRO Anal. Numér.15 (1981), no. 3, 237-248. · Zbl 0467.35019
[19] San Martín, J. A.; Starovoitov, V.; Tucsnak, M.Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal.161 (2002), no. 2, 113-147. doi: 10.1007/s002050100172 · Zbl 1018.76012
[20] Ybert, C.; Barentin, C.; Cottin-Bizonne, C.; Joseph, P.; Bocquet, L.Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Physics of Fluids19 (2007), no. 12, 123601, 10 pp. doi: 10.1063/1.2815730 · Zbl 1182.76848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.