×

Fluid-rigid structure interaction system with Coulomb’s law. (English) Zbl 1386.35320

Summary: We propose a new model in a fluid-rigid structure system composed by a rigid body and a viscous incompressible fluid using a boundary condition based on Coulomb’s law. This boundary condition allows the fluid to slip on the boundary if the tangential component of the stress is too large. In the opposite case, we recover the standard Dirichlet boundary condition. The governing equations are the Navier-Stokes system for the fluid and the Newton laws for the body. The corresponding coupled system can be written as a variational inequality. We prove that there exists a weak solution of this system.

MSC:

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D27 Other free boundary flows; Hele-Shaw flows
Full Text: DOI

References:

[1] L. Bălilescu, J. San Martín, and T. Takahashi, {\it On the Navier-Stokes system with the Coulomb friction law boundary condition}, Z. Angew. Math. Phys., 68 (2017). · Zbl 1365.35102
[2] C. Conca, {\it On the application of the homogenization theory to a class of problems arising in fluid mechanics}, J. Math. Pures Appl. (9), 64 (1985), pp. 31-75. · Zbl 0566.35080
[3] C. Conca, J. San Martín H., and M. Tucsnak, {\it Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid}, Comm. Partial Differential Equations, 25 (2000), pp. 1019-1042. · Zbl 0954.35135
[4] P. Cumsille and T. Takahashi, {\it Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid}, Czechoslovak Math. J., 58 (2008), pp. 961-992. · Zbl 1174.35092
[5] B. Desjardins and M. J. Esteban, {\it Existence of weak solutions for the motion of rigid bodies in a viscous fluid}, Arch. Ration. Mech. Anal., 146 (1999), pp. 59-71. · Zbl 0943.35063
[6] B. Desjardins and M. J. Esteban, {\it On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models}, Comm. Partial Differential Equations, 25 (2000), pp. 1399-1413. · Zbl 0953.35118
[7] R. J. DiPerna and P.-L. Lions, {\it Ordinary differential equations, transport theory and Sobolev spaces}, Invent. Math., 98 (1989), pp. 511-547. · Zbl 0696.34049
[8] G. Duvaut and J.-L. Lions, {\it Les inéquations en mécanique et en physique}, Dunod, Paris, 1972. · Zbl 0298.73001
[9] S. Ervedoza, M. Hillairet, and C. Lacave, {\it Long-time behavior for the two-dimensional motion of a disk in a viscous fluid}, Comm. Math. Phys., 329 (2014), pp. 325-382. · Zbl 1300.35071
[10] E. Feireisl, {\it On the motion of rigid bodies in a viscous compressible fluid}, Arch. Ration. Mech. Anal., 167 (2003), pp. 281-308. · Zbl 1090.76061
[11] E. Feireisl, {\it On the motion of rigid bodies in a viscous incompressible fluid}, J. Evol. Equ., 3 (2003), pp. 419-441. · Zbl 1039.76071
[12] E. Feireisl and Š. Nečasová, {\it On the motion of several rigid bodies in a viscous multipolar fluid}, in Functional Analysis and Evolution Equations, Birkhäuser, Basel, 2008, pp. 291-305. · Zbl 1156.76003
[13] G. P. Galdi, {\it On the steady self-propelled motion of a body in a viscous incompressible fluid}, Arch. Ration. Mech. Anal., 148 (1999), pp. 53-88. · Zbl 0957.76012
[14] G. P. Galdi, {\it On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications}, in Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 653-791. · Zbl 1230.76016
[15] G. P. Galdi, {\it An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems}, 2nd ed., Springer Monogr. Math., Springer, New York, 2011. · Zbl 1245.35002
[16] G. P. Galdi and A. L. Silvestre, {\it Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques}, in Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (NY) 1, Springer, New York, 2002, pp. 121-144. · Zbl 1046.35084
[17] G. P. Galdi and A. L. Silvestre, {\it On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force}, Indiana Univ. Math. J., 58 (2009), pp. 2805-2842. · Zbl 1192.35130
[18] M. Geissert, K. Götze, and M. Hieber, {\it \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids}, Trans. Amer. Math. Soc., 365 (2013), pp. 1393-1439. · Zbl 1282.35273
[19] D. Gérard-Varet and M. Hillairet, {\it Regularity issues in the problem of fluid structure interaction}, Arch. Ration. Mech. Anal., 195 (2010), pp. 375-407. · Zbl 1192.35131
[20] D. Gérard-Varet and M. Hillairet, {\it Existence of weak solutions up to collision for viscous fluid-solid systems with slip}, Comm. Pure Appl. Math., 67 (2014), pp. 2022-2075. · Zbl 1307.35193
[21] D. Gérard-Varet, M. Hillairet, and C. Wang, {\it The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow}, J. Math. Pures Appl. (9), 103 (2015), pp. 1-38. · Zbl 1307.35221
[22] C. Grandmont and Y. Maday, {\it Existence for an unsteady fluid-structure interaction problem}, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 609-636. · Zbl 0969.76017
[23] M. D. Gunzburger, H.-C. Lee, and G. A. Seregin, {\it Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions}, J. Math. Fluid Mech., 2 (2000), pp. 219-266. · Zbl 0970.35096
[24] M. Hillairet, {\it Lack of collision between solid bodies in a 2D incompressible viscous flow}, Comm. Partial Differential Equations, 32 (2007), pp. 1345-1371. · Zbl 1221.35279
[25] M. Hillairet and T. Takahashi, {\it Collisions in three-dimensional fluid structure interaction problems}, SIAM J. Math. Anal., 40 (2009), pp. 2451-2477. · Zbl 1178.35291
[26] J. Houot and A. Munnier, {\it On the motion and collisions of rigid bodies in an ideal fluid}, Asymptot. Anal., 56 (2008), pp. 125-158. · Zbl 1165.35300
[27] P.-L. Lions, {\it Mathematical Topics in Fluid Mechanics, Vol.} 1, Oxford Lecture Ser. Math. Appl. 3, Oxford University Press, New York, 1996. · Zbl 0866.76002
[28] J. A. San Martín, V. Starovoitov, and M. Tucsnak, {\it Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid}, Arch. Ration. Mech. Anal., 161 (2002), pp. 113-147. · Zbl 1018.76012
[29] V. N. Starovoĭtov, {\it Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid}, J. Math. Sci., 130 (2005), pp. 4893-4898. · Zbl 1148.35347
[30] V. N. Starovoitov, {\it Behavior of a rigid body in an incompressible viscous fluid near a boundary}, in Free Boundary Problems (Trento, 2002), Internat. Ser. Numer. Math. 147, Birkhäuser, Basel, 2004, pp. 313-327. · Zbl 1060.76038
[31] T. Takahashi, {\it Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain}, Adv. Differential Equations, 8 (2003), pp. 1499-1532. · Zbl 1101.35356
[32] T. Takahashi and M. Tucsnak, {\it Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid}, J. Math. Fluid Mech., 6 (2004), pp. 53-77. · Zbl 1054.35061
[33] T. Takahashi, M. Tucsnak, and G. Weiss, {\it Stabilization of a fluid-rigid body system}, J. Differential Equations, 259 (2015), pp. 6459-6493. · Zbl 1328.35182
[34] R. Temam, {\it Navier-Stokes Equations}, Stud. Math. Appl. 2, North-Holland, Amsterdam, 1979. · Zbl 0426.35003
[35] J. L. Vázquez and E. Zuazua, {\it Large time behavior for a simplified 1D model of fluid-solid interaction}, Comm. Partial Differential Equations, 28 (2003), pp. 1705-1738. · Zbl 1071.74017
[36] J. L. Vázquez and E. Zuazua, {\it Lack of collision in a simplified \(1\) D model for fluid-solid interaction}, Math. Models Methods Appl. Sci., 16 (2006), pp. 637-678. · Zbl 1387.35634
[37] H. F. Weinberger, {\it On the steady fall of a body in a Navier-Stokes fluid}, in Partial Differential Equations, Proc. Sympos. Pure Math. 23, AMS, Providence, RI, 1973, pp. 421-439. · Zbl 0264.76025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.