×

On the existence of strong solutions to a fluid structure interaction problem with Navier boundary conditions. (English) Zbl 1421.35242

Summary: We consider a fluid-structure interaction system composed by a three-dimensional viscous incompressible fluid and an elastic plate located on the upper part of the fluid boundary. The fluid motion is governed by the Navier-Stokes system whereas we add a damping in the plate equation. We use here Navier-slip boundary conditions instead of the standard no-slip boundary conditions. The main results are the local in time existence and uniqueness of strong solutions of the corresponding system and the global in time existence and uniqueness of strong solutions for small data and if we assume the presence of frictions in the boundary conditions.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35D35 Strong solutions to PDEs
74K20 Plates

References:

[1] Acevedo, P., Amrouche, C., Conca, C., Amrita, G.: Stokes and Navier-Stokes Equations with Navier Boundary Condition. arXiv:1805.07760v1 (2018) · Zbl 1412.35212
[2] Badra, M., Takahashi, T.: Feedback boundary stabilization of 2D fluid – structure interaction systems. Discrete Contin. Dyn. Syst. 37(5), 2315-2373 (2017) · Zbl 1357.93054 · doi:10.3934/dcds.2017102
[3] Beirão da Veiga, H.: On the existence of strong solutions to a coupled fluid – structure evolution problem. J. Math. Fluid Mech. 6(1), 21-52 (2004) · Zbl 1068.35087 · doi:10.1007/s00021-003-0082-5
[4] Beirão Da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9(9-10), 1079-1114 (2004) · Zbl 1103.35084
[5] Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Systems & Control: Foundations & Applications, 2nd edn. Birkhäuser Boston Inc, Boston, MA (2007) · Zbl 1117.93002 · doi:10.1007/978-0-8176-4581-6
[6] Boulakia, M., Guerrero, S., Takahashi, T.: Well-Posedness for the Coupling Between a Viscous Incompressible Fluid and an Elastic Structure. https://hal.inria.fr/hal-01939464 (2018) (preprint) · Zbl 1419.76123
[7] Bravin, M.: On the Weak Uniqueness of “Viscous Incompressible Fluid + Rigid Body” System with Navier Slip-With-Friction Conditions in a 2D Bounded Domain. https://hal.archives-ouvertes.fr/hal-01740859 (2018) (preprint) · Zbl 1416.35179
[8] Bălilescu, L., San Martín, J., Takahashi, T.: Fluid – rigid structure interaction system with Coulomb’s law. SIAM J. Math. Anal. 49(6), 4625-4657 (2017) · Zbl 1386.35320 · doi:10.1137/16M1099947
[9] Casanova, J.-J.: Existence of Time-Periodic Strong Solutions to a Fluid-Structure System. https://hal.archives-ouvertes.fr/hal-01838262 (2018) (preprint)
[10] Casanova, J.-J.: Fluid Structure System with Boundary Conditions Involving the Pressure. arXiv:1707.06382 (2017)
[11] Chen, S.P., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems. Pac. J. Math. 136(1), 15-55 (1989) · Zbl 0633.47025 · doi:10.2140/pjm.1989.136.15
[12] Gérard-Varet, D., Hillairet, M.: Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Commun. Pure Appl. Math. 67(12), 2022-2075 (2014) · Zbl 1307.35193 · doi:10.1002/cpa.21523
[13] Gérard-Varet, D., Hillairet, M., Wang, C.: The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow. J. Math. Pures Appl. (9) 103(1), 1-38 (2015) · Zbl 1307.35221 · doi:10.1016/j.matpur.2014.03.005
[14] Grandmont, C.: On an Unsteady Fluid-Beam Interaction Problem. https://basepub.dauphine.fr/bitstream/handle/123456789/6848/2004-48.pdf (2004) (preprint)
[15] Grandmont, C., Hillairet, M.: Existence of global strong solutions to a beam – fluid interaction system. Arch. Ration. Mech. Anal. 220(3), 1283-1333 (2016) · Zbl 1334.35232 · doi:10.1007/s00205-015-0954-y
[16] Guidoboni, G., Guidorzi, M., Padula, M.: Continuous dependence on initial data in fluid – structure motions. J. Math. Fluid Mech. 14(1), 1-32 (2012) · Zbl 1294.35099 · doi:10.1007/s00021-010-0031-0
[17] Guidorzi, M., Padula, M., Plotnikov, P.I.: Hopf solutions to a fluid – elastic interaction model. Math. Models Methods Appl. Sci. 18(2), 215-269 (2008) · Zbl 1153.76338 · doi:10.1142/S0218202508002668
[18] Hillairet, M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32(7-9), 1345-1371 (2007) · Zbl 1221.35279 · doi:10.1080/03605300601088740
[19] Hillairet, M., Takahashi, T.: Collisions in three-dimensional fluid structure interaction problems. SIAM J. Math. Anal. 40(6), 2451-2477 (2009) · Zbl 1178.35291 · doi:10.1137/080716074
[20] Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491-511 (1995) · Zbl 0840.73010 · doi:10.1137/1037123
[21] Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(2), 303-319 (1977) · Zbl 0381.35066
[22] Kistler, S.F., Scriven, L.E.: Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system. Int. J. Numer. Methods Fluids 4(3), 207-229 (1984) · Zbl 0555.76026 · doi:10.1002/fld.1650040302
[23] Lequeurre, J.: Existence of strong solutions to a fluid – structure system. SIAM J. Math. Anal. 43(1), 389-410 (2011) · Zbl 1232.35118 · doi:10.1137/10078983X
[24] Liakos, A.: Finite-element approximation of viscoelastic fluid flow with slip boundary condition. Comput. Math. Appl. 49(2-3), 281-294 (2005) · Zbl 1138.76386 · doi:10.1016/j.camwa.2004.07.013
[25] Lions, J.-L., Magenes, E.: Problèmes aux Limites Non Homogènes et Applications. Travaux et Recherches Mathématiques, No. 18, vol. 2. Dunod, Paris (1968) · Zbl 0197.06701
[26] Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC Research Notes in Mathematics, vol. 398. CRC, Boca Raton, FL (1999) · Zbl 0924.73003
[27] Muha, B., Čanić, S.: Existence of a weak solution to a fluid – elastic structure interaction problem with the Navier slip boundary condition. J. Differ. Equ. 260(12), 8550-8589 (2016) · Zbl 1341.35103 · doi:10.1016/j.jde.2016.02.029
[28] Navier, C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Royale des Sciences de l’Institut de France 6(1823), 389-440 (1823)
[29] Planas, G., Sueur, F.: On the “viscous incompressible fluid + rigid body” system with Navier conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 55-80 (2014) · Zbl 1288.35375 · doi:10.1016/j.anihpc.2013.01.004
[30] Raymond, J.-P.: Feedback stabilization of a fluid-structure model. SIAM J. Control Optim. 48(8), 5398-5443 (2010) · Zbl 1213.93177 · doi:10.1137/080744761
[31] San Martín, J.A., Starovoitov, V., Tucsnak, M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113-147 (2002) · Zbl 1018.76012 · doi:10.1007/s002050100172
[32] Shimada, R.: On the \[L_p\] Lp-\[L_q\] Lq maximal regularity for Stokes equations with Robin boundary condition in a bounded domain. Math. Methods Appl. Sci. 30(3), 257-289 (2007) · Zbl 1107.76029 · doi:10.1002/mma.777
[33] Temam, R.: Navier-Stokes Equations. Studies in Mathematics and its Applications. Theory and numerical analysis, With an appendix by F. Thomasset, vol. 2, revised edn. North-Holland Publishing Co., Amsterdam (1979) · Zbl 0426.35003
[34] Temam, R.: Problèmes Mathématiques en Plasticité, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], vol. 12. Gauthier-Villars, Montrouge (1983) · Zbl 0547.73026
[35] Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50(6), 697-721 (1987) · Zbl 0596.76031 · doi:10.1007/BF01398380
[36] Wang, C.: Strong solutions for the fluid – solid systems in a 2-D domain. Asymptot. Anal. 89(3-4), 263-306 (2014) · Zbl 1302.35325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.