×

Entropy production and its large deviations in an active lattice gas. (English) Zbl 1539.82138

Summary: Active systems are characterized by a continuous production of entropy at steady state. We study the statistics of entropy production within a lattice-based model of interacting active particles that is capable of motility-induced phase separation. Exploiting a recent formulation of the exact fluctuating hydrodynamics for this model, we provide analytical results for its entropy production statistics in both typical and atypical (biased) regimes. This complements previous studies of the large deviation statistics of entropy production in off-lattice active particle models that could only be addressed numerically. Our analysis uncovers an unexpectedly intricate phase diagram, with five different phases arising (under bias) within the parameter regime where the unbiased system is in its homogeneous state. Notably, we find the concurrence of first order and second order nonequilibrium phase transition curves at a bias-induced tricritical point, a feature not yet reported in previous studies of active systems.

MSC:

82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
82C22 Interacting particle systems in time-dependent statistical mechanics
82D05 Statistical mechanics of gases

References:

[1] Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R., Hydrodynamics of soft active matter, Rev. Mod. Phys., 85, 1143-1189 (2013) · doi:10.1103/revmodphys.85.1143
[2] Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G., Active particles in complex and crowded environments, Rev. Mod. Phys., 88 (2016) · doi:10.1103/revmodphys.88.045006
[3] Fodor, É.; Cristina Marchetti, M., The statistical physics of active matter: from self-catalytic colloids to living cells, Physica A, 504, 106-120 (2018) · Zbl 1514.82129 · doi:10.1016/j.physa.2017.12.137
[4] Cates, M. E.; Tailleur, J., Motility-induced phase separation, Annu. Rev. Condens. Matter Phys., 6, 219-244 (2015) · doi:10.1146/annurev-conmatphys-031214-014710
[5] Caprini, L.; Marconi, U. M.; Puglisi, A.; Vulpiani, A., The entropy production of Ornstein-Uhlenbeck active particles: a path integral method for correlations, J. Stat. Mech. (2019) · doi:10.1088/1742-5468/ab14dd
[6] Dabelow, L.; Bo, S.; Eichhorn, R., Irreversibility in active matter systems: fluctuation theorem and mutual information, Phys. Rev. X, 9 (2019) · doi:10.1103/physrevx.9.021009
[7] Ganguly, C.; Chaudhuri, D., Stochastic thermodynamics of active Brownian particles, Phys. Rev. E, 88 (2013) · doi:10.1103/physreve.88.032102
[8] Shankar, S.; Cristina Marchetti, M., Hidden entropy production and work fluctuations in an ideal active gas, Phys. Rev. E, 98 (2018) · doi:10.1103/physreve.98.020604
[9] Fodor, É.; Nardini, C.; Cates, M. E.; Tailleur, J.; Visco, P.; van Wijland, F., How far from equilibrium is active matter?, Phys. Rev. Lett., 117 (2016) · doi:10.1103/physrevlett.117.038103
[10] Mandal, D.; Klymko, K.; DeWeese, M. R., Entropy production and fluctuation theorems for active matter, Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.258001
[11] Li, Y. I.; Cates, M. E., Steady state entropy production rate for scalar Langevin field theories, J. Stat. Mech. (2021) · Zbl 1539.82263 · doi:10.1088/1742-5468/abd311
[12] Caballero, F.; Cates, M. E., Stealth entropy production in active field theories near Ising critical points, Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.240604
[13] Fodor, É.; Jack, R. L.; Cates, M. E., Irreversibility and biased ensembles in active matter: insights from stochastic thermodynamics, Annu. Rev. Condens. Matter Phys., 13, 215-238 (2022) · doi:10.1146/annurev-conmatphys-031720-032419
[14] O’Byrne, J.; Kafri, Y.; Tailleur, J.; van Wijland, F., Time irreversibility in active matter, from micro to macro, Nat. Rev. Phys., 4, 167-183 (2022) · doi:10.1038/s42254-021-00406-2
[15] Nardini, C.; Fodor, É.; Tjhung, E.; van Wijland, F.; Tailleur, J.; Cates, M. E., Entropy production in field theories without time-reversal symmetry: quantifying the non-equilibrium character of active matter, Phys. Rev. X, 7 (2017) · doi:10.1103/physrevx.7.021007
[16] Borthne, Ø. L.; Fodor, É.; Cates, M. E., Time-reversal symmetry violations and entropy production in field theories of polar active matter, New J. Phys., 22 (2020) · doi:10.1088/1367-2630/abcd66
[17] Solon, A. P.; Stenhammar, J.; Cates, M. E.; Kafri, Y.; Tailleur, J., Generalized thermodynamics of motility-induced phase separation: phase equilibria, Laplace pressure, and change of ensembles, New J. Phys., 20 (2018) · doi:10.1088/1367-2630/aaccdd
[18] Cagnetta, F.; Corberi, F.; Gonnella, G.; Suma, A., Large fluctuations and dynamic phase transition in a system of self-propelled particles, Phys. Rev. Lett., 119 (2017) · Zbl 1519.60085 · doi:10.1103/physrevlett.119.158002
[19] Whitelam, S.; Klymko, K.; Mandal, D., Phase separation and large deviations of lattice active matter, J. Chem. Phys., 148 (2018) · doi:10.1063/1.5023403
[20] Tociu, L.; Fodor, É.; Nemoto, T.; Vaikuntanathan, S., How dissipation constrains fluctuations in nonequilibrium liquids: diffusion, structure, and biased interactions, Phys. Rev. X, 9 (2019) · doi:10.1103/physrevx.9.041026
[21] Gradenigo, G.; Majumdar, S. N., A first-order dynamical transition in the displacement distribution of a driven run-and-tumble particle, J. Stat. Mech. (2019) · Zbl 1457.82251 · doi:10.1088/1742-5468/ab11be
[22] Nemoto, T.; Fodor, É.; Cates, M. E.; Jack, R. L.; Tailleur, J., Optimizing active work: dynamical phase transitions, collective motion, and jamming, Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.022605
[23] Cagnetta, F.; Mallmin, E., Efficiency of one-dimensional active transport conditioned on motility, Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.022130
[24] Chiarantoni, P.; Cagnetta, F.; Corberi, F.; Gonnella, G.; Suma, A., Work fluctuations of self-propelled particles in the phase separated state, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.60085 · doi:10.1088/1751-8121/ab8f3c
[25] Fodor, É.; Nemoto, T.; Vaikuntanathan, S., Dissipation controls transport and phase transitions in active fluids: mobility, diffusion and biased ensembles, New J. Phys., 22 (2020) · doi:10.1088/1367-2630/ab6353
[26] Yan, J.; Touchette, H.; Rotskoff, G. M., Learning nonequilibrium control forces to characterize dynamical phase transitions, Phys. Rev. E, 105 (2022) · doi:10.1103/physreve.105.024115
[27] GrandPre, T.; Klymko, K.; Mandadapu, K. K.; Limmer, D. T., Entropy production fluctuations encode collective behavior in active matter, Phys. Rev. E, 103 (2021) · doi:10.1103/physreve.103.012613
[28] Keta, Y-E; Fodor, É.; van Wijland, F.; Cates, M. E.; Jack, R. L., Collective motion in large deviations of active particles, Phys. Rev. E, 103 (2021) · doi:10.1103/physreve.103.022603
[29] Agranov, T.; Ro, S.; Kafri, Y.; Lecomte, V., Exact fluctuating hydrodynamics of active lattice gases-typical fluctuations, J. Stat. Mech. (2021) · Zbl 1539.76202 · doi:10.1088/1742-5468/ac1406
[30] Agranov, T.; Ro, S.; Kafri, Y.; Lecomte, V., Macroscopic fluctuation theory and current fluctuations in active lattice gases (2022)
[31] Peshkov, A.; Aranson, I. S.; Bertin, E.; Chaté, H.; Ginelli, F., Nonlinear field equations for aligning self-propelled rods, Phys. Rev. Lett., 109 (2012) · doi:10.1103/physrevlett.109.268701
[32] Bertin, E.; Chaté, H.; Ginelli, F.; Mishra, S.; Peshkov, A.; Ramaswamy, S., Mesoscopic theory for fluctuating active nematics, New J. Phys., 15 (2013) · doi:10.1088/1367-2630/15/8/085032
[33] Wittkowski, R.; Tiribocchi, A.; Stenhammar, J.; Allen, R. J.; Marenduzzo, D.; Cates, M. E., Scalar φ_4 field theory for active-particle phase separation, Nat. Commun., 5, 4351 (2014) · doi:10.1038/ncomms5351
[34] Solon, A. P.; Stenhammar, J.; Cates, M. E.; Kafri, Y.; Tailleur, J., Generalized thermodynamics of phase equilibria in scalar active matter, Phys. Rev. E, 97 (2018) · doi:10.1103/physreve.97.020602
[35] Tjhung, E.; Nardini, C.; Cates, M. E., Cluster phases and bubbly phase separation in active fluids: reversal of the Ostwald process, Phys. Rev. X, 8 (2018) · doi:10.1103/physrevx.8.031080
[36] Pietzonka, P.; Seifert, U., Entropy production of active particles and for particles in active baths, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1387.82043 · doi:10.1088/1751-8121/aa91b9
[37] Seifert, U., Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., 75 (2012) · doi:10.1088/0034-4885/75/12/126001
[38] Kourbane-Houssene, M.; Erignoux, C.; Bodineau, T.; Tailleur, J., Exact hydrodynamic description of active lattice gases, Phys. Rev. Lett., 120 (2018) · doi:10.1103/physrevlett.120.268003
[39] Bertini, L.; De Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C., Macroscopic fluctuation theory, Rev. Mod. Phys., 87, 593-636 (2015) · doi:10.1103/revmodphys.87.593
[40] Cates, M. E.; Fodor, É.; Markovich, T.; Nardini, C.; Tjhung, E., Stochastic hydrodynamics of complex fluids: discretisation and entropy production, Entropy, 24, 254 (2022) · doi:10.3390/e24020254
[41] Jack, R. L.; Thompson, I. R.; Sollich, P., Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems, Phys. Rev. Lett., 114 (2015) · doi:10.1103/physrevlett.114.060601
[42] Dolezal, J.; Jack, R. L., Large deviations and optimal control forces for hard particles in one dimension, J. Stat. Mech. (2019) · Zbl 1459.82172 · doi:10.1088/1742-5468/ab4801
[43] Lecomte, V.; Garrahan, J. P.; van Wijland, F., Inactive dynamical phase of a symmetric exclusion process on a ring, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1246.82073 · doi:10.1088/1751-8113/45/17/175001
[44] Agranov, T.; Cates, M. E.; Jack, R. L. (2022)
[45] Touchette, H., The large deviation approach to statistical mechanics, Phys. Rep., 478, 1-69 (2009) · doi:10.1016/j.physrep.2009.05.002
[46] Jack, R. L., Ergodicity and large deviations in physical systems with stochastic dynamics, Eur. Phys. J. B, 93, 74 (2020) · Zbl 1516.82060 · doi:10.1140/epjb/e2020-100605-3
[47] Pietzonka, P.; Barato, A. C.; Seifert, U., Universal bounds on current fluctuations, Phys. Rev. E, 93 (2016) · doi:10.1103/physreve.93.052145
[48] Horowitz, J. M.; Gingrich, T. R., Proof of the finite-time thermodynamic uncertainty relation for steady-state currents, Phys. Rev. E, 96 (2017) · doi:10.1103/physreve.96.020103
[49] Bodineau, T.; Lagouge, M., Current large deviations in a driven dissipative model, J. Stat. Phys., 139, 201-218 (2010) · Zbl 1191.82029 · doi:10.1007/s10955-010-9934-7
[50] Baek, Y.; Kafri, Y.; Lecomte, V., Dynamical symmetry breaking and phase transitions in driven diffusive systems, Phys. Rev. Lett., 118 (2017) · doi:10.1103/physrevlett.118.030604
[51] Baek, Y.; Kafri, Y.; Lecomte, V., Dynamical phase transitions in the current distribution of driven diffusive channels, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1387.82041 · doi:10.1088/1751-8121/aaa8f9
[52] Bodineau, T.; Derrida, B., Current fluctuations in nonequilibrium diffusive systems: an additivity principle, Phys. Rev. Lett., 92 (2004) · doi:10.1103/physrevlett.92.180601
[53] Hurtado, P. I.; Garrido, P. L., Test of the additivity principle for current fluctuations in a model of heat conduction, Phys. Rev. Lett., 102 (2009) · doi:10.1103/physrevlett.102.250601
[54] Hurtado, P. I.; Garrido, P. L., Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle, Phys. Rev. E, 81 (2010) · doi:10.1103/physreve.81.041102
[55] Hurtado, P. I.; Pérez-Espigares, C.; del Pozo, J. J.; Garrido, P. L., Symmetries in fluctuations far from equilibrium, Proc. Natl Acad. Sci. USA, 108, 7704-7709 (2011) · Zbl 1256.82005 · doi:10.1073/pnas.1013209108
[56] Prados, A.; Lasanta, A.; Hurtado, P. I., Large fluctuations in driven dissipative media, Phys. Rev. Lett., 107 (2011) · doi:10.1103/physrevlett.107.140601
[57] Meerson, B.; Vilenkin, A.; Krapivsky, P. L., Survival of a static target in a gas of diffusing particles with exclusion, Phys. Rev. E, 90 (2014) · doi:10.1103/physreve.90.022120
[58] Meerson, B., Full absorption statistics of diffusing particles with exclusion, J. Stat. Mech. (2015) · Zbl 1456.82680 · doi:10.1088/1742-5468/2015/04/p04009
[59] Agranov, T.; Meerson, B.; Vilenkin, A., Survival of interacting diffusing particles inside a domain with absorbing boundary, Phys. Rev. E, 93 (2016) · doi:10.1103/physreve.93.012136
[60] Agranov, T.; Meerson, B., Fluctuations of absorption of interacting diffusing particles by multiple absorbers, Phys. Rev. E, 95 (2017) · doi:10.1103/physreve.95.062124
[61] Agranov, T.; Meerson, B., Narrow escape of interacting diffusing particles, Phys. Rev. Lett., 120 (2018) · doi:10.1103/physrevlett.120.120601
[62] Agranov, T.; Krapivsky, P. L.; Meerson, B., Occupation-time statistics of a gas of interacting diffusing particles, Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.052102
[63] Bertini, L.; De Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C., Current fluctuations in stochastic lattice gases, Phys. Rev. Lett., 94 (2005) · Zbl 1097.82016 · doi:10.1103/physrevlett.94.030601
[64] Bodineau, T.; Derrida, B., Distribution of current in nonequilibrium diffusive systems and phase transitions, Phys. Rev. E, 72 (2005) · doi:10.1103/physreve.72.066110
[65] Bertini, L.; Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C., Non equilibrium current fluctuations in stochastic lattice gases, J. Stat. Phys., 123, 237-276 (2006) · Zbl 1097.82016 · doi:10.1007/s10955-006-9056-4
[66] Shpielberg, O.; Akkermans, E., Le Chatelier principle for out-of-equilibrium and boundary-driven systems: application to dynamical phase transitions, Phys. Rev. Lett., 116 (2016) · doi:10.1103/physrevlett.116.240603
[67] Zarfaty, L.; Meerson, B., Statistics of large currents in the Kipnis-Marchioro-Presutti model in a ring geometry, J. Stat. Mech. (2016) · Zbl 1456.82701 · doi:10.1088/1742-5468/2016/03/033304
[68] Andelman, D.; Cates, M. E.; Roux, D.; Safran, S. A., Structure and phase equilibria of microemulsions, J. Chem. Phys., 87, 7229-7241 (1987) · doi:10.1063/1.453367
[69] Bodineau, T.; Derrida, B., Cumulants and large deviations of the current through non-equilibrium steady states, C. R. Phys., 8, 540-555 (2007) · doi:10.1016/j.crhy.2007.04.014
[70] Kaiser, M.; Jack, R. L.; Zimmer, J., Canonical structure and orthogonality of forces and currents in irreversible Markov chains, J. Stat. Phys., 170, 1019-1050 (2018) · Zbl 1392.82038 · doi:10.1007/s10955-018-1986-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.