×

Symmetries in fluctuations far from equilibrium. (English) Zbl 1256.82005

Summary: Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.

MSC:

82C05 Classical dynamic and nonequilibrium statistical mechanics (general)

References:

[1] ADV CHEM PHYS 137 pp 31– (2008)
[2] Bertini, Physical Review Letters 87 (4) pp 040601– (2001) · doi:10.1103/PhysRevLett.87.040601
[3] Bertini, Physical Review Letters 94 (3) pp 030601– (2005) · doi:10.1103/PhysRevLett.94.030601
[4] Bodineau, Physical Review Letters 92 (18) pp 180601– (2004) · doi:10.1103/PhysRevLett.92.180601
[5] Hurtado, Physical Review Letters 102 (25) pp 250601– (2009) · doi:10.1103/PhysRevLett.102.250601
[6] PHYS REV E 81 pp 041102– (2010) · doi:10.1103/PhysRevE.81.041102
[7] PHYS REV E 72 pp 066110– (2005) · doi:10.1103/PhysRevE.72.066110
[8] PHYS REPORTS 377 pp 1– (2003) · doi:10.1016/S0370-1573(02)00558-6
[9] ADV PHYS 57 pp 457– (2008) · doi:10.1080/00018730802538522
[10] Garrido, Physical Review Letters 86 (24) pp 5486– (2001) · doi:10.1103/PhysRevLett.86.5486
[11] Hurtado, Physical Review Letters 96 (1) pp 010601– (2006) · doi:10.1103/PhysRevLett.96.010601
[12] Evans, Physical Review Letters 71 (15) pp 2401– (1993) · Zbl 0966.82507 · doi:10.1103/PhysRevLett.71.2401
[13] Gallavotti, Physical Review Letters 74 (14) pp 2694– (1995) · doi:10.1103/PhysRevLett.74.2694
[14] 95 pp 333– (1999) · Zbl 0934.60090 · doi:10.1023/A:1004589714161
[15] J PHYS AMATH GEN 31 pp 3719– (1998) · Zbl 0910.60095 · doi:10.1088/0305-4470/31/16/003
[16] Garrido 42 (4) pp 1954– (1990) · doi:10.1103/PhysRevA.42.1954
[17] Gross, PNAS 93 (25) pp 14256– (1996) · doi:10.1073/pnas.93.25.14256
[18] Nature; Physical Science (London) 389 pp 463– (1997) · doi:10.1038/38963
[19] 27 pp 65– (1982) · doi:10.1007/BF01011740
[20] 126 pp 1201– (2007) · Zbl 1152.82317 · doi:10.1007/s10955-006-9244-2
[21] PHYS REPORTS 478 pp 1– (2009) · doi:10.1016/j.physrep.2009.05.002
[22] AIP CONF PROC 1332 pp 204– (2011)
[23] Giardina, Physical Review Letters 96 (12) pp 120603– (2006) · doi:10.1103/PhysRevLett.96.120603
[24] Collin, Nature; Physical Science (London) 437 (7056) pp 231– (2005) · doi:10.1038/nature04061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.