×

Large deviations and optimal control forces for hard particles in one dimension. (English) Zbl 1459.82172

Summary: We analyse large deviations of the dynamical activity in one-dimensional systems of diffusing hard particles. Using an optimal-control representation of the large-deviation problem, we analyse effective interaction forces which can be added to the system, to aid sampling of biased ensembles of trajectories. We find several distinct regimes, as a function of the activity and the system size: we present approximate analytical calculations that characterise the effective interactions in several of these regimes. For high activity the system is hyperuniform and the interactions are long-ranged and repulsive. For low activity, there is a near-equilibrium regime described by macroscopic fluctuation theory, characterised by long-ranged attractive forces. There is also a far-from-equilibrium regime in which one of the interparticle gaps becomes macroscopic and the interactions depend strongly on the size of this gap. We discuss the extent to which transition path sampling of these ensembles is improved by adding suitable control forces.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
49N90 Applications of optimal control and differential games
82M31 Monte Carlo methods applied to problems in statistical mechanics

Software:

Matplotlib

References:

[1] Gallavotti G and Cohen E G D 1995 Dynamical ensembles in nonequilibrium statistical mechanics Phys. Rev. Lett.74 2694-7 · doi:10.1103/PhysRevLett.74.2694
[2] Lebowitz J L and Spohn H 1999 A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics J. Stat. Phys.95 333-65 · Zbl 0934.60090 · doi:10.1023/A:1004589714161
[3] Bodineau T and Derrida B 2004 Current fluctuations in nonequilibrium diffusive systems: an additivity principle Phys. Rev. Lett.92 180601 · doi:10.1103/PhysRevLett.92.180601
[4] Mehl J, Speck T and Seifert U 2008 Large deviation function for entropy production in driven one-dimensional systems Phys. Rev. E 78 011123 · doi:10.1103/PhysRevE.78.011123
[5] Derrida B 2007 Non-equilibrium steady states: fluctuations and large deviations of the density and of the current J. Stat. Mech. P07023 · Zbl 1456.82551 · doi:10.1088/1742-5468/2007/07/P07023
[6] Lecomte V, Appert-Rolland C and van Wijland F 2007 Thermodynamic formalism for systems with markov dynamics J. Stat. Phys.127 51 · Zbl 1145.82014 · doi:10.1007/s10955-006-9254-0
[7] Tailleur J and Kurchan J 2007 Probing rare physical trajectories with lyapunov weighted dynamics Nat. Phys.3 203-7 · doi:10.1038/nphys515
[8] Garrahan J P, Jack R L, Lecomte V, Pitard E, van Duijvendijk K and van Wijland F 2007 Dynamical first-order phase transition in kinetically constrained models of glasses Phys. Rev. Lett.98 195702 · doi:10.1103/PhysRevLett.98.195702
[9] Hedges L O, Jack R L, Garrahan J P and Chandler D 2009 Dynamic order-disorder in atomistic models of structural glass formers Science323 1309 · doi:10.1126/science.1166665
[10] Nemoto T, Fodor E, Cates M E, Jack R L and Tailleur J 2019 Optimizing active work: dynamical phase transitions, collective motion, and jamming Phys. Rev. E 99 022605 · doi:10.1103/PhysRevE.99.022605
[11] Weber J K, Jack R L, Schwantes C R and Pande V S 2014 Dynamical phase transitions reveal amyloid-like states on protein folding landscapes Biophys. J.107 974-82 · doi:10.1016/j.bpj.2014.06.046
[12] Hurtado P I, Espigares C P, del Pozo J J and Garrido P L 2014 Thermodynamics of currents in nonequilibrium diffusive systems: theory and simulation J. Stat. Phys.154 214-64 · Zbl 1291.82104 · doi:10.1007/s10955-013-0894-6
[13] Baek Y, Kafri Y and Lecomte V 2017 Dynamical symmetry breaking and phase transitions in driven diffusive systems Phys. Rev. Lett.118 030604 · doi:10.1103/PhysRevLett.118.030604
[14] den Hollander F 2000 Large deviations (Providence, RI: American Mathematical Society) · Zbl 0949.60001
[15] Touchette H 2009 The large deviation approach to statistical mechanics Phys. Rep.478 1 · doi:10.1016/j.physrep.2009.05.002
[16] Ragone F, Wouters J and Bouchet F 2017 Computation of extreme heat waves in climate models using a large deviation algorithm Proc. Natl Acad. Sci.115 24-9 · Zbl 1416.86013 · doi:10.1073/pnas.1712645115
[17] Bodineau T and Derrida B 2005 Distribution of current in nonequilibrium diffusive systems and phase transitions Phys. Rev. E 72 · doi:10.1103/PhysRevE.72.066110
[18] Jack R L 2019 Large deviations in models of growing clusters with symmetry-breaking transitions Phys. Rev. E 100 012140 · doi:10.1103/PhysRevE.100.012140
[19] Crooks G E 1999 Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences Phys. Rev. E 60 2721-6 · doi:10.1103/PhysRevE.60.2721
[20] Saito K and Dhar A 2011 Generating function formula of heat transfer in harmonic networks Phys. Rev. E 83 041121 · doi:10.1103/PhysRevE.83.041121
[21] Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2015 Macroscopic fluctuation theory Rev. Mod. Phys.87 593-636 · doi:10.1103/RevModPhys.87.593
[22] Gingrich T R, Horowitz J M, Perunov N and England J L 2016 Dissipation bounds all steady-state current fluctuations Phys. Rev. Lett.116 120601 · doi:10.1103/PhysRevLett.116.120601
[23] Garrahan J P, Jack R L, Lecomte V, Pitard E, van Duijvendijk K and van Wijland F 2009 First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories J. Phys. A: Math. Theor.42 075007 · Zbl 1157.82014 · doi:10.1088/1751-8113/42/7/075007
[24] Speck T, Malins A and Royall C P 2012 First-order phase transition in a model glass former: coupling of local structure and dynamics Phys. Rev. Lett.109 195703 · doi:10.1103/PhysRevLett.109.195703
[25] Lecomte V, Garrahan J P and van Wijland F 2012 Inactive dynamical phase of a symmetric exclusion process on a ring J. Phys. A 45 175001 · Zbl 1246.82073 · doi:10.1088/1751-8113/45/17/175001
[26] Hirschberg O, Mukamel D and Schütz G M 2015 Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current J. Stat. Mech. P11023 · Zbl 1456.82664 · doi:10.1088/1742-5468/2015/11/P11023
[27] Shpielberg O, Don Y and Akkermans E 2017 Numerical study of continuous and discontinuous dynamical phase transitions for boundary-driven systems Phys. Rev. E 95 032137 · doi:10.1103/PhysRevE.95.032137
[28] Janas M, Kamenev A and Meerson B 2016 Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation Phys. Rev. E 94 032133 · doi:10.1103/PhysRevE.94.032133
[29] Pérez-Espigares C, Carollo F, Garrahan J P and Hurtado P I 2018 Dynamical criticality in open systems: nonperturbative physics, microscopic origin, and direct observation Phys. Rev. E 98 060102 · doi:10.1103/PhysRevE.98.060102
[30] Jack R L, Thompson I R and Sollich P 2015 Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems Phys. Rev. Lett.114 060601 · doi:10.1103/PhysRevLett.114.060601
[31] Thompson I R and Jack R L 2015 Dynamical phase transitions in one-dimensional hard-particle systems Phys. Rev. E 92 052115 · doi:10.1103/PhysRevE.92.052115
[32] Appert-Rolland C, Derrida B, Lecomte V and van Wijland F 2008 Universal cumulants of the current in diffusive systems on a ring Phys. Rev. E 78 021122 · doi:10.1103/PhysRevE.78.021122
[33] Brewer T, Clark S R, Bradford R and Jack R L 2018 Efficient characterisation of large deviations using population dynamics J. Stat. Mech. 053204 · Zbl 1459.82132 · doi:10.1088/1742-5468/aab3ef
[34] Bodineau T and Toninelli C 2012 Activity phase transition for constrained dynamics Commun. Math. Phys.311 357-96 · Zbl 1241.82053 · doi:10.1007/s00220-012-1449-4
[35] Bodineau T, Lecomte V and Toninelli C 2012 Finite size scaling of the dynamical free-energy in a kinetically constrained model J. Stat. Phys.147 1-17 · Zbl 1245.82049 · doi:10.1007/s10955-012-0458-1
[36] Nemoto T, Jack R L and Lecomte V 2017 Finite-size scaling of a first-order dynamical phase transition: adaptive population dynamics and an effective model Phys. Rev. Lett.118 115702 · doi:10.1103/PhysRevLett.118.115702
[37] Fleming W H 1985 A stochastic control approach to some large deviations problems Recent Mathematical Methods in Dynamic Programming ed I C Dolcetta et al (Berlin: Springer) pp 52-66 · Zbl 0585.93067 · doi:10.1007/BFb0074780
[38] Chetrite R and Touchette H 2015 Variational and optimal control representations of conditioned and driven processes J. Stat. Mech. P12001 · Zbl 1456.93007 · doi:10.1088/1742-5468/2015/12/P12001
[39] Jack R L and Sollich P 2010 Large deviations and ensembles of trajectories in stochastic models Prog. Theor. Phys. Suppl.184 304-17 · Zbl 1201.82008 · doi:10.1143/PTPS.184.304
[40] Nemoto T, Bouchet F, Jack R L and Lecomte V 2016 Population-dynamics method with a multicanonical feedback control Phys. Rev. E 93 062-123 · doi:10.1103/PhysRevE.93.062123
[41] Ray U, Chan K-L G and Limmer D T 2018 Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics Phys. Rev. Lett.120 210602 · doi:10.1103/PhysRevLett.120.210602
[42] Jacobson D and Whitelam S 2019 Direct evaluation of dynamical large-deviation rate functions using a variational ansatz (arXiv:1903.06098)
[43] Gardiner C W 2004 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences 2nd edn (Berlin: Springer) · Zbl 1143.60001 · doi:10.1007/978-3-662-05389-8
[44] Das A and Limmer D 2019 (arXiv:1909.03589)
[45] Chétrite R and Touchette H 2015 Nonequilibrium markov processes conditioned on large deviations Ann. Henri Poincaré16 2005 · Zbl 1330.82039 · doi:10.1007/s00023-014-0375-8
[46] Jack R L and Sollich P 2015 Effective interactions and large deviations in stochastic processes Eur. Phys. J.: Spec. Top.224 2351-67 · doi:10.1140/epjst/e2015-02416-9
[47] Nemoto T and Sasa S-I 2014 Computation of large deviation statistics via iterative measurement-and-feedback procedure Phys. Rev. Lett.112 090602 · doi:10.1103/PhysRevLett.112.090602
[48] Chetrite R and Touchette H 2013 Nonequilibrium microcanonical and canonical ensembles and their equivalence Phys. Rev. Lett.111 120601 · doi:10.1103/PhysRevLett.111.120601
[49] Garrahan J P 2016 Classical stochastic dynamics and continuous matrix product states: gauge transformations, conditioned and driven processes, and equivalence of trajectory ensembles J. Stat. Mech.066110 073208 · Zbl 1456.82555 · doi:10.1088/1742-5468/2016/07/073208
[50] Hartmann C and Schütte C 2012 Efficient rare event simulation by optimal nonequilibrium forcing J. Stat. Mech. P11004 · doi:10.1088/1742-5468/2012/11/P11004
[51] Bolhuis P G, Chandler D, Dellago C and Geissler P L 2002 Transition path sampling: throwing ropes over rough mountain passes, in the dark Annu. Rev. Phys. Chem.53 291-318 · doi:10.1146/annurev.physchem.53.082301.113146
[52] Giardina C, Kurchan J, Lecomte V and Tailleur J 2011 Simulating rare events in dynamical processes J. Stat. Phys.145 787-811 · Zbl 1252.82007 · doi:10.1007/s10955-011-0350-4
[53] Lecomte V and Tailleur J 2007 A numerical approach to large deviations in continuous time J. Stat. Mech. P03004 · doi:10.1088/1742-5468/2007/03/P03004
[54] Giardinà C, Kurchan J and Peliti L 2006 Direct evaluation of large-deviation functions Phys. Rev. Lett.96 120603 · doi:10.1103/PhysRevLett.96.120603
[55] Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2005 Current fluctuations in stochastic lattice gases Phys. Rev. Lett.94 030601 · Zbl 1097.82016 · doi:10.1103/PhysRevLett.94.030601
[56] Bertini L, Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2006 Non equilibrium current fluctuations in stochastic lattice gases J. Stat. Phys.123 237-76 · Zbl 1097.82016 · doi:10.1007/s10955-006-9056-4
[57] Imparato A, Lecomte V and van Wijland F 2009 Equilibriumlike fluctuations in some boundary-driven open diffusive systems Phys. Rev. E 80 011131 · doi:10.1103/PhysRevE.80.011131
[58] Shpielberg O, Nemoto T and Caetano J A 2018 Universality in dynamical phase transitions of diffusive systems Phys. Rev. E 98 052116 · doi:10.1103/PhysRevE.98.052116
[59] Bodineau T, Derrida B, Lecomte V and van Wijland F 2008 Long range correlations and phase transitions in non-equilibrium diffusive systems J. Stat. Phys.133 1013-31 · Zbl 1161.82013 · doi:10.1007/s10955-008-9647-3
[60] Popkov V, Schütz G M and Simon D 2010 Asep on a ring conditioned on enhanced flux J. Stat. Mech. P10007 · Zbl 1456.82309 · doi:10.1088/1742-5468/2010/10/P10007
[61] Lazarescu A 2015 The physicist’s companion to current fluctuations: one-dimensional bulk-driven lattice gases J. Phys. A 48 503001 · Zbl 1338.82042 · doi:10.1088/1751-8113/48/50/503001
[62] Baek Y, Kafri Y and Lecomte V 2018 Dynamical phase transitions in the current distribution of driven diffusive channels J. Phys. A 51 105001 · Zbl 1387.82041 · doi:10.1088/1751-8121/aaa8f9
[63] Baek Y, Kafri Y and Lecomte V 2019 Finite-size and finite-time effects in large deviation functions near dynamical symmetry breaking transitions (arXiv:1905.05486)
[64] Torquato S and Stillinger F H 2003 Local density fluctuations, hyperuniformity, and order metrics Phys. Rev. E 68 041113 · doi:10.1103/PhysRevE.68.041113
[65] Garcia-Millan R, Pruessner G, Pickering L and Christensen K 2018 Correlations and hyperuniformity in the avalanche size of the oslo model Europhys. Lett.122 50003 · doi:10.1209/0295-5075/122/50003
[66] Zachary C E, Jiao Y and Torquato S 2011 Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings Phys. Rev. Lett.106 178001 · doi:10.1103/PhysRevLett.106.178001
[67] Jiao Y, Lau T, Hatzikirou H, Meyer-Hermann M, Corbo J C and Torquato S 2014 Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem Phys. Rev. E 89 022721 · doi:10.1103/PhysRevE.89.022721
[68] Gabrielli A, Jancovici B, Joyce M, Lebowitz J L, Pietronero L and Sylos Labini F 2003 Generation of primordial cosmological perturbations from statistical mechanical models Phys. Rev. D 67 043506 · doi:10.1103/PhysRevD.67.043506
[69] Florescu M, Torquato S and Steinhardt P J 2009 Designer disordered materials with large, complete photonic band gaps Proc. Natl Acad. Sci. USA106 20658-63 · doi:10.1073/pnas.0907744106
[70] Lebowitz J L 1983 Charge fluctuations in coulomb systems Phys. Rev. A 27 1491-4 · Zbl 0547.35086 · doi:10.1103/PhysRevA.27.1491
[71] Levesque D, Weis J J and Lebowitz J L 2000 Charge fluctuations in the two-dimensional one-component plasma J. Stat. Phys.100 209-22 · Zbl 0982.82023 · doi:10.1023/A:1018643829340
[72] Asmussen S and Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer) · Zbl 1126.65001 · doi:10.1007/978-0-387-69033-9
[73] de Haan L and Ferreira A 2010 Extreme Value Theory: an Introduction(Springer Series in Operations Research and Financial Engineering) (New York: Springer)
[74] Guevara Hidalgo E, Nemoto T and Lecomte V 2017 Finite-time and finite-size scalings in the evaluation of large-deviation functions: numerical approach in continuous time Phys. Rev. E 95 062134 · doi:10.1103/PhysRevE.95.062134
[75] Ferré G and Touchette H 2018 Adaptive sampling of large deviations J. Stat. Phys.172 1525-44 · Zbl 1416.65041 · doi:10.1007/s10955-018-2108-8
[76] Hunter J D 2007 Matplotlib: a 2D graphics environment Comput. Sci. Eng.9 90-5 · doi:10.1109/MCSE.2007.55
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.