×

A first-order dynamical transition in the displacement distribution of a driven run-and-tumble particle. (English) Zbl 1457.82251

J. Stat. Mech. Theory Exp. 2019, No. 5, Article ID 053206, 34 p. (2019); erratum ibid. 2020, No. 4, Article ID 049901, 9 p. (2020).
Summary: We study the probability distribution \(P(X_N = X,N)\) of the total displacement \(X_N\) of an \(N\)-step run and tumble particle on a line, in the presence of a constant nonzero drive \(E\). While the central limit theorem predicts a standard Gaussian form for \(P(X,N)\) near its peak, we show that for large positive and negative \(X\), the distribution exhibits anomalous large deviation forms. For large positive \(X\), the associated rate function is nonanalytic at a critical value of the scaled distance from the peak where its first derivative is discontinuous. This signals a first-order dynamical phase transition from a homogeneous “fluid” phase to a “condensed” phase that is dominated by a single large run. A similar first-order transition occurs for negative large fluctuations as well. Numerical simulations are in excellent agreement with our analytical predictions.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics

References:

[1] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha A 2013 Rev. Mod. Phys.85 1143 · doi:10.1103/RevModPhys.85.1143
[2] Bechinger C, Di Leonardo R, Lowen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys.88 045006 · doi:10.1103/RevModPhys.88.045006
[3] Ramaswamy S 2017 J. Stat. Mech. P054002 · Zbl 1457.82202 · doi:10.1088/1742-5468/aa6bc5
[4] Fodor E and Marchetti M C 2018 Physica A 504 106 · Zbl 1514.82129 · doi:10.1016/j.physa.2017.12.137
[5] Tailleur J and Cates M E 2008 Phys. Rev. Lett.100 218103 · doi:10.1103/PhysRevLett.100.218103
[6] Fily Y and Marchetti M-C 2012 Phys. Rev. Lett.108 235702 · doi:10.1103/PhysRevLett.108.235702
[7] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett.110 238301 · doi:10.1103/PhysRevLett.110.238301
[8] Cates M E and Tailleur J 2013 Europhys. Lett.101 20010 · doi:10.1209/0295-5075/101/20010
[9] Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys.6 219-44 · doi:10.1146/annurev-conmatphys-031214-014710
[10] Solon A P, Cates M E and Tailleur J 2015 Eur. Phys. J. Spec. Top.224 1231-62 · doi:10.1140/epjst/e2015-02457-0
[11] Berg H C 2003 E. coli in Motion (New York: Springer)
[12] Slowman A B, Evans M R and Blythe R A 2016 Phys. Rev. Lett.116 218101 · doi:10.1103/PhysRevLett.116.218101
[13] Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2015 Phys. Rev. Lett.114 018301 · doi:10.1103/PhysRevLett.114.018301
[14] Sevilla F J and Gomez Nava L A 2014 Phys. Rev. E 90 022130 · doi:10.1103/PhysRevE.90.022130
[15] Sevilla F J and Sandoval M 2015 Phys. Rev. E 91 052150 · doi:10.1103/PhysRevE.91.052150
[16] Takatori S C, De Dier R, Vermant J and Brady J F 2016 Nat. Commun.7 10694 · doi:10.1038/ncomms10694
[17] Kurzthaler C, Devailly C, Arlt J, Franosch T, Poon W C K, Martinez V A and Brown A T 2018 Phys. Rev. Lett.121 078001 · doi:10.1103/PhysRevLett.121.078001
[18] Basu U, Majumdar S N, Rosso A and Schehr G 2018 Phys. Rev. E 98 062121 · doi:10.1103/PhysRevE.98.062121
[19] Dauchot O and Demery V 2018 (arXiv:1810.13303)
[20] Malakar K, Das A, Kundu A, Vijay Kumar K and Dhar A 2019 (arXiv:1902.04171)
[21] Masoliver J and Lindenberg K 2017 Eur. Phys. J. B 90 107 · doi:10.1140/epjb/e2017-80123-7
[22] Weiss G H 2002 Physica A 311 381 · Zbl 0996.35040 · doi:10.1016/S0378-4371(02)00805-1
[23] Angelani L, Di Leonardo R and Paoluzzi M 2014 Eur. J. Phys. E 37 59 · doi:10.1140/epje/i2014-14059-4
[24] Angelani L 2015 J. Phys. A: Math. Theor.48 495003 · Zbl 1337.82015 · doi:10.1088/1751-8113/48/49/495003
[25] Malakar K, Jemseena V, Kundu A, Vijay Kumar K, Sabhapandit S, Majumdar S N, Redner S and Dhar A 2018 J. Stat. Mech. P043215 · Zbl 1459.82182 · doi:10.1088/1742-5468/aab84f
[26] Demaerel T and Maes C 2018 Phys. Rev. E 97 032604 · doi:10.1103/PhysRevE.97.032604
[27] Evans M R and Majumdar S N 2018 J. Phys. A: Math. Theor.51 475003 · Zbl 1411.82028 · doi:10.1088/1751-8121/aae74e
[28] Le Doussal P, Majumdar S N and Schehr G 2019 (arXiv:1902.06176)
[29] Dhar A, Kundu A, Majumdar S N, Sabhapandit S and Schehr G 2019 Phys. Rev.99 032132 · doi:10.1103/physreve.99.032132
[30] Majumdar S N, Evans M R and Zia R K P 2005 Phys. Rev. Lett.94 180601 · doi:10.1103/PhysRevLett.94.180601
[31] Evans M R, Majumdar S N and Zia R K P 2006 J. Stat. Phys.123 357 · Zbl 1097.82025 · doi:10.1007/s10955-006-9046-6
[32] Evans M R and Hanney T 2005 J. Phys. A: Math. Gen.38 R195 · Zbl 1086.82012
[33] Majumdar S N 2008 Real-Space Condensation in Stochastic Mass Transport Models(Les Houches Lecture Notes for the Summer School on ‘Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing’ (Les Houches, July 2008)) ed J Jacobsen et al (Oxford: Oxford University Press)
[34] Szavits-Nossan J, Evans M R and Majumdar S N 2014 Phys. Rev. Lett.112 020602 · doi:10.1103/PhysRevLett.112.020602
[35] Szavits-Nossan J, Evans M R and Majumdar S N 2014 J. Phys. A: Math. Theor.47 455004 · Zbl 1312.60018 · doi:10.1088/1751-8113/47/45/455004
[36] Szavits-Nossan J, Evans M R and Majumdar S N 2017 J. Phys. A: Math. Theor.50 024005 · Zbl 1357.82061 · doi:10.1088/1751-8121/50/2/024005
[37] Gradenigo G and Bertin E 2017 Entropy19 517 · doi:10.3390/e19100517
[38] Gradenigo G, Sarracino A, Puglisi A and Touchette H 2013 J. Phys. A: Math. Theor.46 335002 · Zbl 1276.82025 · doi:10.1088/1751-8113/46/33/335002
[39] Nagaev A V 1969 Theor. Probab. Appl.14 51 · Zbl 0196.21002 · doi:10.1137/1114006
[40] Nagaev A V 1969 Theor. Probab. Appl.14 193 · Zbl 0196.21003 · doi:10.1137/1114028
[41] Dennery P and Krzywicki A 1967 Mathematics for Physicists (New York: Harper and Row) · Zbl 0156.46201
[42] Vivo P, Majumdar S N and Bohigas O 2008 Phys. Rev. Lett.101 216809 · doi:10.1103/PhysRevLett.101.216809
[43] Majumdar S N, Nadal C, Scardicchio A and Vivo P 2009 Phys. Rev. Lett.103 220603 · doi:10.1103/PhysRevLett.103.220603
[44] Vivo P, Majumdar S N and Bohigas O 2010 Phys. Rev. B 81 104202 · doi:10.1103/PhysRevB.81.104202
[45] Nadal C, Majumdar S N and Vergassola M 2010 Phys. Rev. Lett.104 110501 · Zbl 1245.82022 · doi:10.1103/PhysRevLett.104.110501
[46] Nadal C, Majumdar S N and Vergassola M 2011 J. Stat. Phys.142 403-38 · Zbl 1245.82021 · doi:10.1007/s10955-010-0108-4
[47] Majumdar S N, Nadal C, Scardicchio A and Vivo P 2011 Phys. Rev. E 83 041105 · doi:10.1103/PhysRevE.83.041105
[48] Texier C and Majumdar S N 2013 Phys. Rev. Lett.110 250602 · doi:10.1103/PhysRevLett.110.250602
[49] Majumdar S N and Schehr G 2014 J. Stat. Mech. P01012 · Zbl 1456.82019
[50] Cunden F D, Mezzadri F and Vivo P 2016 J. Stat. Phys.164 1062 · Zbl 1364.82062 · doi:10.1007/s10955-016-1577-x
[51] Cunden F D, Facchi P, Ligabo M and Vivo P 2017 J. Stat. Mech. 053303 · Zbl 1457.82297 · doi:10.1088/1742-5468/aa690c
[52] Grabsch A, Majumdar S N and Texier C 2017 J. Stat. Phys.167 234 · Zbl 1376.82028 · doi:10.1007/s10955-017-1755-5
[53] Lacroix-A-Chez-Toine B, Grabsch A, Majumdar S N and Schehr G 2018 J. Stat. Mech. 013203 · Zbl 1459.82298 · doi:10.1088/1742-5468/aa9bb2
[54] Gradenigo G and Majumdar S N A free run-and-tumble particle and the first-order transition in the space of its trajectories in preparation
[55] Gradenigo G, Iubini S, Livi R and Majumdar S N Localization in the discrete non-linear Schrödinger equation: mechanism of a first-order transition in the microcanonical ensemble in preparation
[56] Gradenigo G, Marini Bettolo Marconi U, Puglisi A and Sarracino A 2012 Phys. Rev. E 85 031112 · doi:10.1103/PhysRevE.85.031112
[57] Gervois A and Piasecki J 1986 J. Stat. Phys.42 1091 · doi:10.1007/BF01010463
[58] Alastuey A and Piasecki J 2010 J. Stat. Phys.139 991 · Zbl 1205.82119 · doi:10.1007/s10955-010-9976-x
[59] Martens K, Angelani L, Di Leonardo R and Bocquet L 2012 Probability distributions for the run-and-tumble bacterial dynamics: an analogy to the Lorentz model Eur. Phys. J. E 35 84 · doi:10.1140/epje/i2012-12084-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.