×

Quadrature of functions with endpoint singular and generalised polynomial behaviour in computational physics. (English) Zbl 1537.65021

Summary: Fast and accurate numerical integration always represented a bottleneck in high-performance computational physics, especially in large and multiscale industrial simulations involving Finite (FEM) and Boundary Element Methods (BEM). The computational demand escalates significantly in problems modelled by irregular or endpoint singular behaviours which can be approximated with generalised polynomials of real degree. This is due to both the practical limitations of finite-arithmetic computations and the inefficient samples distribution of traditional Gaussian quadrature rules. We developed a non-iterative mathematical software implementing an innovative numerical quadrature which largely enhances the precision of Gauss-Legendre formulae (G-L) for integrands modelled as generalised polynomial with the optimal amount of nodes and weights capable of guaranteeing the required numerical precision. This methodology avoids to resort to more computationally expensive techniques such as adaptive or composite quadrature rules. From a theoretical point of view, the numerical method underlying this work was preliminary presented in [1] by constructing the monomial transformation itself and providing all the necessary conditions to ensure the numerical stability and exactness of the quadrature up to machine precision. The novel contribution of this work concerns the optimal implementation of said method, the extension of its applicability at run-time with different type of inputs, the provision of additional insights on its functionalities and its straightforward implementation, in particular FEM applications or other mathematical software either as an external tool or embedded suite. The open-source, cross-platform C++ library Monomial Transformation Quadrature Rule (MTQR) has been designed to be highly portable, fast and easy to integrate in larger codebases. Numerical examples in multiple physical applications showcase the improved efficiency and accuracy when compared to traditional schemes.

MSC:

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
65D30 Numerical integration
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Lombardi, G., Design of quadrature rules for Müntz and Müntz-logarithmic polynomials using monomial transformation, Int. J. Numer. Methods Eng., 80, 13, 1687-1717, 2009 · Zbl 1183.65025
[2] 2019, IEEE standard for floating-point arithmetic, IEEE Std 754-2019 (Revision of IEEE 754-2008
[3] Boost C++ Libraries, 1999
[4] Gough, B., GNU Scientific Library Reference Manual, 2009, Network Theory Ltd.
[5] Graglia, R.; Lombardi, G., Singular higher order complete vector bases for finite methods, IEEE Trans. Antennas Propag., 52, 7, 1672-1685, 2004 · Zbl 1368.78136
[6] Johnston, P.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Int. J. Numer. Methods Eng., 62, 4, 564-578, 2005 · Zbl 1119.65318
[7] Monegato, G.; Scuderi, L., Numerical integration of functions with endpoint singularities and/or complex poles in 3D Galerkin boundary element methods, Publ. Res. Inst. Math. Sci., 41, 4, 869-895, 2005 · Zbl 1100.65019
[8] Carley, M., Numerical quadratures for singular and hypersingular integrals in boundary element methods, SIAM J. Sci. Comput., 29, 3, 1207-1216, 2007 · Zbl 1141.65393
[9] Scuderi, L., On the computation of nearly singular integrals in 3D BEM collocation, Int. J. Numer. Methods Eng., 74, 11, 1733-1770, 2008 · Zbl 1195.74256
[10] Elliott, D.; Johnston, B.; Johnston, P., Clenshaw-Curtis and Gauss-Legendre quadrature for certain boundary element integrals, SIAM J. Sci. Comput., 31, 1, 510-530, 2008 · Zbl 1186.65030
[11] Graglia, R.; Lombardi, G., Singular higher order divergence-conforming bases of additive kind and moments method applications to 3D sharp-wedge structures, IEEE Trans. Antennas Propag., 56, 12, 3768-3788, 2008 · Zbl 1369.78718
[12] Graglia, R.; Lombardi, G., Machine precision evaluation of singular and nearly singular potential integrals by use of Gauss quadrature formulas for rational functions, IEEE Trans. Antennas Propag., 56, 4, 981-998, 2008 · Zbl 1369.65038
[13] Lombardi, G.; Graglia, R. D., Modeling junctions in sharp edge conducting structures with higher order method of moments, IEEE Trans. Antennas Propag., 62, 11, 5723-5731, 2014 · Zbl 1371.78208
[14] Wu, H.; Zou, J., Finite element method and its analysis for a nonlinear Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 56, 3, 1338-1359, 2018 · Zbl 1393.65047
[15] Chaumont-Frelet, T., Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers, Calcolo, 56, 2019 · Zbl 1430.65008
[16] Ordokhani, Y.; Rahimkhani, P., A numerical technique for solving fractional variational problems by Müntz—Legendre polynomials, J. Appl. Math. Comput., 58, 75-94, 2018 · Zbl 1400.49034
[17] Hou, D.; Hasan, M. T.; Xu, C., Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math., 18, 1, 43-62, 2018 · Zbl 1382.65343
[18] Fries, T.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Methods Eng., 84, 3, 253-304, 2010 · Zbl 1202.74169
[19] Babuška, I.; Banerjee, U., Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Eng., 201-204, 91-111, 2012 · Zbl 1239.74093
[20] Chen, S.; Shen, J., Enriched spectral methods and applications to problems with weakly singular solutions, J. Sci. Comput., 77, 1468-1489, 2018 · Zbl 1406.65123
[21] Marin, L.; Lesnic, D.; Mantič, V., Treatment of singularities in Helmholtz-type equations using the boundary element method, J. Sound Vib., 278, 1, 39-62, 2004 · Zbl 1236.65150
[22] Shen, J.; Wang, Y., Müntz-Galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems, SIAM J. Sci. Comput., 38, 4, A2357-A2381, 2016 · Zbl 1416.65482
[23] Jiang, J.; Mohamed, M. S.; Seaid, M.; Li, Hongqiu, Identifying the wavenumber for the inverse Helmholtz problem using an enriched finite element formulation, Comput. Methods Appl. Mech. Eng., 340, 615-629, 2018 · Zbl 1440.65161
[24] Benvenuti, E.; Chiozzi, A.; Manzini, G.; Sukumar, N., Extended virtual element method for the Laplace problem with singularities and discontinuities, Comput. Methods Appl. Mech. Eng., 356, 571-597, 2019 · Zbl 1441.74230
[25] Jablonski, A., An effective algorithm for calculating the Chandrasekhar function, Comput. Phys. Commun., 183, 8, 1773-1782, 2012 · Zbl 1305.82007
[26] Fowlie, A., A fast C++ implementation of thermal functions, Comput. Phys. Commun., 228, 264-272, 2018
[27] Jablonski, A., The Chandrasekhar function for modeling photoelectron transport in solids, Comput. Phys. Commun., 235, 489-501, 2019 · Zbl 1531.82001
[28] Gautschi, W., Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal., 4, 3, 357-362, 1967 · Zbl 0279.65024
[29] Monegato, G., Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math., 50, 1, 9-31, 1994 · Zbl 0818.65016
[30] Ma, J.; Rokhlin, V.; Wandzura, S., Generalized Gaussian quadrature rules for systems of arbitrary functions, SIAM J. Numer. Anal., 33, 3, 971-996, 1996 · Zbl 0858.65015
[31] Kolm, P.; Rokhlin, V., Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl., 41, 3, 327-352, 2001 · Zbl 0985.65016
[32] Pachucki, K.; Puchalski, M.; Yerokhin, V., Extended Gaussian quadratures for functions with an end-point singularity of logarithmic type, Comput. Phys. Commun., 185, 11, 2913-2919, 2014 · Zbl 1348.65004
[33] Milovanović, G.; Igić, T.; Turnić, D., Generalized quadrature rules of Gaussian type for numerical evaluation of singular integrals, J. Comput. Appl. Math., 278, 306-325, 2015 · Zbl 1303.41015
[34] Hale, N.; Townsend, A., Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35, 2, A652-A674, 2013 · Zbl 1270.65017
[35] Bogaert, I., Iteration-free computation of Gauss-Legendre quadrature nodes and weights, SIAM J. Sci. Comput., 36, 3, A1008-A1026, 2014 · Zbl 1297.65025
[36] Hughes, T.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Eng., 199, 5, 301-313, 2010 · Zbl 1227.65029
[37] Bartoň, M.; Calo, V. M., Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis, Comput. Aided Des., 82, 57-67, 2017
[38] Johannessen, K. A., Optimal quadrature for univariate and tensor product splines, Comput. Methods Appl. Mech. Eng., 316, 84-99, 2017, Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.65014
[39] Curry, H.; Schoenberg, I., On Pólya frequency functions IV: The fundamental spline functions and their limits, J. Anal. Math., 17, 1, 71-107, 1966 · Zbl 0146.08404
[40] Marsden, M. J., An identity for spline functions with applications to variation-diminishing spline approximation, J. Approx. Theory, 3, 1, 7-49, 1970 · Zbl 0192.42103
[41] de Boor, C., On calculating with b-splines, J. Approx. Theory, 6, 1, 50-62, 1972 · Zbl 0239.41006
[42] Hiemstra, R. R.; Calabrò, F.; Schillinger, D.; Hughes, T. J., Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis, Comput. Methods Appl. Mech. Eng., 316, 966-1004, 2017, Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.65170
[43] Bartoň, M.; Ait-Haddou, R.; Calo, V. M., Gaussian quadrature rules for C1 quintic splines with uniform knot vectors, J. Comput. Appl. Math., 322, 57-70, 2017 · Zbl 1365.65061
[44] Logg, A.; Wells, G., DOLFIN: automated finite element computing, ACM Trans. Math. Softw., 37, 2010 · Zbl 1364.65254
[45] Kirby, R., Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Trans. Math. Softw., 30, 502-516, 2004 · Zbl 1070.65571
[46] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, T.; Pazner, W.; Tomov, M. S.V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: A modular finite element methods library, Development and Application of Open-Source Software for Problems with Numerical PDEs. Development and Application of Open-Source Software for Problems with Numerical PDEs, Comput. Math. Appl., 81, 42-74, 2021 · Zbl 1524.65001
[47] Africa, P. C., lifex: A flexible, high performance library for the numerical solution of complex finite element problems, SoftwareX, 20, Article 101252 pp., 2022
[48] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II finite element library: Design, features, and insights, Development and Application of Open-Source Software for Problems with Numerical PDEs. Development and Application of Open-Source Software for Problems with Numerical PDEs, Comput. Math. Appl., 81, 407-422, 2021 · Zbl 1524.65002
[49] Badia, S.; Martín, A. F., A tutorial-driven introduction to the parallel finite element library FEMPAR v1.0.0, Comput. Phys. Commun., 248, Article 107059 pp., 2020 · Zbl 07678485
[50] Verdugo, F.; Badia, S., The software design of Gridap: A finite element package based on the Julia JIT compiler, Comput. Phys. Commun., 276, Article 108341 pp., 2022 · Zbl 1516.65162
[51] Scroggs, M. W.; Baratta, I.; Richardson, C.; Wells, G., Basix: a runtime finite element basis evaluation library, J. Open Sour. Softw., 7, 73, 3982, 2022
[52] Yan, Z.-G.; Pan, Y.; Castiglioni, G.; Hillewaert, K.; Peiró, J.; Moxey, D.; Sherwin, S. J., Nektar++: Design and implementation of an implicit, spectral/hp element, compressible flow solver using a jacobian-free Newton-Krylov approach, Development and Application of Open-Source Software for Problems with Numerical PDEs. Development and Application of Open-Source Software for Problems with Numerical PDEs, Comput. Math. Appl., 81, 351-372, 2021 · Zbl 1456.76087
[53] Xu, F.; Xiong, Q.; Aizinger, V.; Ducrozet, G., Development and application of open-source software for problems with numerical PDEs, Development and Application of Open-Source Software for Problems with Numerical PDEs. Development and Application of Open-Source Software for Problems with Numerical PDEs, Comput. Math. Appl., 81, 1-2, 2021 · Zbl 1530.00030
[54] Stabile, G.; Rozza, G., Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Comput. Fluids, 2018 · Zbl 1410.76264
[55] M.W. Hess, A. Lario, G. Mengaldo, G. Rozza, Reduced order modeling for spectral element methods: current developments in Nektar++ and further perspectives, 2022.
[56] Milovanovic, V.; Gradimir, G. V., Müntz orthogonal polynomials and their numerical evaluation, (Applications and Computation of Orthogonal Polynomials, 1999), 179-194 · Zbl 0941.65013
[57] Almira, J., Müntz type theorems I, Surv. Approx. Theory, 3, 152-194, 2007 · Zbl 1181.41001
[58] Stroud, A.; Secrest, D., Gaussian Quadrature Formulas, 1966, Prentice-Hall · Zbl 0156.17002
[59] Szegő, G., Orthogonal Polynomials, Colloquium Publications, vol. 23, 1939, American Mathematical Society · JFM 65.0278.03
[60] Barrett, W., Convergence properties of gaussian quadrature formulae, Comput. J., 3, 4, 272-277, 1961 · Zbl 0098.31703
[61] Elliott, D., Uniform asymptotic expansions of the Jacobi polynomials and an associated function, Math. Comput., 25, 114, 309-315, 1971 · Zbl 0221.65027
[62] Donaldson, J. D.; Elliott, D., A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal., 9, 4, 573-602, 1972 · Zbl 0264.65020
[63] Holmes, M.; Kashyap, R.; Wyatt, R., Physical properties of optical fiber sidetap grating filters: free-space model, IEEE J. Sel. Top. Quantum Electron., 5, 5, 1353-1365, 1999
[64] Fikioris, G.; Cottis, P.; Panagopoulos, A., On an integral related to biaxially anisotropic media, J. Comput. Appl. Math., 146, 2, 343-360, 2002 · Zbl 1015.33003
[65] Golubović, R.; Polimeridis, A. G.; Mosig, J. R., The weighted averages method for semi-infinite range integrals involving products of Bessel functions, IEEE Trans. Antennas Propag., 61, 11, 5589-5596, 2013 · Zbl 1372.65340
[66] Michalski, K. A.; Mosig, J. R., Efficient computation of Sommerfeld integral tails – methods and algorithms, J. Electromagn. Waves Appl., 30, 3, 281-317, 2016
[67] dos Santos, M. P.S.; Ferreira, J. A.F.; Simões, J. A.O.; Pascoal, R.; Torrão, J.; Xue, X.; Furlani, E. P., Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction, Sci. Rep., 6, 2016
[68] Roesset, J. M., Nondestructive dynamic testing of soils and pavements, J. Appl. Sci. Eng., 1, 61-81, 1999
[69] Craster, R., Scattering by cracks beneath fluid-solid interfaces, J. Sound Vib., 209, 2, 343-372, 1998
[70] Robinson, N., An isotropic elastic medium containing a cylindrical borehole with a rigid plug, Int. J. Solids Struct., 39, 19, 4889-4904, 2002 · Zbl 1060.74007
[71] Bevis, M.; Pan, E.; Zhou, H.; Han, F.; Zhu, R., Surface deformation due to loading of a layered elastic half-space: constructing the solution for a general polygonal load, Acta Geophys., 63, 957-977, 2016
[72] Ceballos, M. A., Numerical evaluation of integrals involving the product of two Bessel functions and a rational fraction arising in some elastodynamic problems, J. Comput. Appl. Math., 313, 355-382, 2017 · Zbl 1388.74117
[73] Davis, A. M.J., Drag modifications for a sphere in a rotational motion at small, non-zero Reynolds and Taylor numbers: wake interference and possibly Coriolis effects, J. Fluid Mech., 237, 13-22, 1992 · Zbl 0753.76186
[74] Tanzosh, J. P.; Stone, H. A., Motion of a rigid particle in a rotating viscous flow: an integral equation approach, J. Fluid Mech., 275, 225-256, 1994 · Zbl 0815.76088
[75] Tartakovsky, D. M.; Moulton, J. D.; Zlotnik, V. A., Kinematic structure of minipermeameter flow, Water Resour. Res., 36, 9, 2433-2442, 2000
[76] Sherwood, J., Optimal probes for withdrawal of uncontaminated fluid samples, Phys. Fluids, 17, 2005 · Zbl 1187.76480
[77] Ledder, G.; Zlotnik, V. A., Evaluation of oscillatory integrals for analytical groundwater flow and mass transport models, Adv. Water Resour., 104, 284-292, 2017
[78] Groote, S.; Körner, J.; Pivovarov, A., On the evaluation of sunset-type Feynman diagrams, Nucl. Phys. B, 542, 1, 515-547, 1999 · Zbl 0942.81045
[79] Conway, J. T., Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries, Mon. Not. R. Astron. Soc., 316, 3, 540-554, 2000
[80] Mobilia, M., Competition between homogeneous and local processes in a diffusive many-body system, J. Stat. Mech. Theory Exp., 04, 2005
[81] Salo, J.; El-Sallabi, H. M.; Vainikainen, P., Statistical analysis of the multiple scattering radio channel, IEEE Trans. Antennas Propag., 54, 11, 3114-3124, 2006 · Zbl 1369.78295
[82] Kisselev, A., Approximate formula for the total cross section for a moderately small eikonal function, Theor. Math. Phys., 201, 1484-1502, 2019 · Zbl 1436.81149
[83] Ikonomou, M.; Köhler, P.; Jacob, A. F., Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines, Z. Angew. Math. Mech., 75, 11, 917-926, 1995 · Zbl 0874.41012
[84] Stone, H. A.; McConnell, H. M., Hydrodynamics of quantized shape transitions of lipid domains, Proc. Math. Phys. Sci., 448, 1932, 97-111, 1995 · Zbl 0821.76003
[85] You-Sheng, X.; Ji, L.; Hua-Mei, L.; Feng-Min, W., Analysis for the potential function of the digital microstructure image of porous media, Commun. Theor. Phys., 40, 4, 393, 2003
[86] Singh, N. P.; Mogi, T., Electromagnetic response of a large circular loop source on a layered earth: a new computation method, Pure Appl. Geophys., 162, 181-200, 2005
[87] Petrov, E. P.; Schwille, P., Translational diffusion in lipid membranes beyond the Saffman-Delbrück approximation, Biophys. J., 94, 5, L41-L43, 2008
[88] Lucas, S., Evaluating infinite integrals involving products of Bessel functions of arbitrary order, J. Comput. Appl. Math., 64, 3, 269-282, 1995 · Zbl 0853.65028
[89] Ratnanather, J. T.; Kim, J. H.; Zhang, S.; Davis, A. M.J.; Lucas, S. K., Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions, ACM Trans. Math. Softw., 40, 2, mar 2014 · Zbl 1305.65105
[90] Deun, J. V.; Cools, R., Algorithm 858: Computing infinite range integrals of an arbitrary product of Bessel functions, ACM Trans. Math. Softw., 32, 4, 580-596, 2006 · Zbl 1230.65027
[91] Van Deun, J.; Cools, R., Integrating products of Bessel functions with an additional exponential or rational factor, Comput. Phys. Commun., 178, 8, 578-590, 2008 · Zbl 1196.65059
[92] W. R. Inc., Mathematica, Version 13.2, 2023, Champaign, IL, 2022
[93] Bladel, J. V., Singular Electromagnetic Fields and Sources, 1991, Oxford University Press
[94] Nedelec, J., Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35, 315-341, 1980 · Zbl 0419.65069
[95] Graglia, R.; Wilton, D.; Peterson, A., Higher order interpolatory vector bases for computational electromagnetics, IEEE Trans. Antennas Propag., 45, 3, 329-342, 1997
[96] Graglia, R. D.; Peterson, A. F., Higher-order techniques in computational electromagnetics, (Electromagnetic Waves, 2015, Institution of Engineering and Technology)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.