×

Müntz spectral methods for the time-fractional diffusion equation. (English) Zbl 1382.65343

Summary: In this paper, we propose and analyze a fractional spectral method for the time-fractional diffusion equation (TFDE). The main novelty of the method is approximating the solution by using a new class of generalized fractional Jacobi polynomials (GFJPs), also known as Müntz polynomials. We construct two efficient schemes using GFJPs for TFDE: one is based on the Galerkin formulation and the other on the Petrov-Galerkin formulation. Our theoretical or numerical investigation shows that both schemes are exponentially convergent for general right-hand side functions, even though the exact solution has very limited regularity (less than \(H^{1}\)). More precisely, an error estimate for the Galerkin-based approach is derived to demonstrate its spectral accuracy, which is then confirmed by numerical experiments. The spectral accuracy of the Petrov-Galerkin-based approach is only verified by numerical tests without theoretical justification. Implementation details are provided for both schemes, together with a series of numerical examples to show the efficiency of the proposed methods.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R11 Fractional partial differential equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

FODE
Full Text: DOI

References:

[1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2014), 424-438.; Alikhanov, A. A., A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438 (2014) · Zbl 1349.65261
[2] F. Amblard, A. C. Maggs, B. Yurke, A. Pargellis and S. Leibler, Subdiffusion and anomalous local viscoelasticity in actin networks, Phys. Rev. Lett. 77 (1996), no. 21, 4470-4473.; Amblard, F.; Maggs, A. C.; Yurke, B.; Pargellis, A.; Leibler, S., Subdiffusion and anomalous local viscoelasticity in actin networks, Phys. Rev. Lett., 77, 21, 4470-4473 (1996)
[3] K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14 (1983), no. 14, 834-844.; Andersen, K. F.; Heinig, H. P., Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal., 14, 14, 834-844 (1983) · Zbl 0527.26010
[4] D. Baffet and J. S. Hesthaven, A kernel compression scheme for fractional differential equations, SIAM J. Numer. Anal. 55 (2017), no. 2, 496-520.; Baffet, D.; Hesthaven, J. S., A kernel compression scheme for fractional differential equations, SIAM J. Numer. Anal., 55, 2, 496-520 (2017) · Zbl 1359.65106
[5] E. Barkai, R. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys Rev. E 61 (2000), no. 1, 132-138.; Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys Rev. E, 61, 1, 132-138 (2000) · Zbl 0972.82065
[6] C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis. Vol. 5: Techniques of Scientific Computing, North Holland, Amsterdam (1997), 209-486.; Bernardi, C.; Maday, Y., Spectral methods, Handbook of Numerical Analysis. Vol. 5: Techniques of Scientific Computing, 209-486 (1997) · Zbl 0701.41009
[7] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge, 2004.; Brunner, H., Collocation Methods for Volterra Integral and Related Functional Differential Equations (2004) · Zbl 1059.65122
[8] S. Chen, J. Shen and L. L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comp. 85 (2016), no. 300, 1603-1638.; Chen, S.; Shen, J.; Wang, L. L., Generalized Jacobi functions and their applications to fractional differential equations, Math. Comp., 85, 300, 1603-1638 (2016) · Zbl 1335.65066
[9] W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal. 47 (2008), no. 1, 204-226.; Deng, W. H., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 1, 204-226 (2008) · Zbl 1416.65344
[10] K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms 36 (2004), no. 1, 31-52.; Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36, 1, 31-52 (2004) · Zbl 1055.65098
[11] V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), no. 3, 558-576.; Ervin, V. J.; Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22, 3, 558-576 (2006) · Zbl 1095.65118
[12] G. H. Gao, Z. Z. Sun and H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys. 259 (2014), no. 2, 33-50.; Gao, G. H.; Sun, Z. Z.; Zhang, H. W., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 2, 33-50 (2014) · Zbl 1349.65088
[13] B. I. Henry and S. L. Wearne, Fractional reaction-diffusion, Phys. A 276 (2000), no. 3, 448-455.; Henry, B. I.; Wearne, S. L., Fractional reaction-diffusion, Phys. A, 276, 3, 448-455 (2000) · Zbl 1103.35047
[14] B. I. Henry and S. L. Wearne, Existence of turing instabilities in a two-species fractional reaction-diffusion system, SIAM J. Appl. Math. 62 (2002), no. 3, 870-887.; Henry, B. I.; Wearne, S. L., Existence of turing instabilities in a two-species fractional reaction-diffusion system, SIAM J. Appl. Math., 62, 3, 870-887 (2002) · Zbl 1103.35047
[15] D. M. Hou and C. J. Xu, A fractional spectral method with applications to some singular problems, Adv. Comput. Math. (2017), 1-34.; Hou, D. M.; Xu, C. J., A fractional spectral method with applications to some singular problems, Adv. Comput. Math., 1-34 (2017) · Zbl 1382.65467
[16] S. D. Jiang, J. W. Zhang, Q. Zhang and Z. M. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21 (2017), no. 3, 650-678.; Jiang, S. D.; Zhang, J. W.; Zhang, Q.; Zhang, Z. M., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 3, 650-678 (2017) · Zbl 1488.65247
[17] B. T. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal. 51 (2013), no. 1, 445-466.; Jin, B. T.; Lazarov, R.; Zhou, Z., Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51, 1, 445-466 (2013) · Zbl 1268.65126
[18] T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), no. 2, 719-736.; Langlands, T. A. M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 2, 719-736 (2005) · Zbl 1072.65123
[19] X. J. Li and C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), no. 3, 2108-2131.; Li, X. J.; Xu, C. J., A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47, 3, 2108-2131 (2009) · Zbl 1193.35243
[20] X. J. Li and C. J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 (2010), no. 5, 1016-1051.; Li, X. J.; Xu, C. J., Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8, 5, 1016-1051 (2010) · Zbl 1364.35424
[21] Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), no. 2, 1533-1552.; Lin, Y. M.; Xu, C. J., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 2, 1533-1552 (2007) · Zbl 1126.65121
[22] C. W. Lv and C. J. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput. 38 (2016), no. 5, A2699-A2724.; Lv, C. W.; Xu, C. J., Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38, 5, A2699-A2724 (2016) · Zbl 1348.65123
[23] B. F. Mainardi, Fractional diffusive waves in viscoelastic solids, Nonlinear Waves in Solids 137 (1995), 93-97.; Mainardi, B. F., Fractional diffusive waves in viscoelastic solids, Nonlinear Waves in Solids, 137, 93-97 (1995)
[24] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 1-77.; Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[25] H. Müller, R. Kimmich and J. Weis, Nmr flow velocity mapping in random percolation model objects: Evidence for a power-law dependence of the volume-averaged velocity on the probe-volume radius, Phys. Rev. E 54 (1996), no. 5, 5278-5285.; Müller, H.; Kimmich, R.; Weis, J., Nmr flow velocity mapping in random percolation model objects: Evidence for a power-law dependence of the volume-averaged velocity on the probe-volume radius, Phys. Rev. E, 54, 5, 5278-5285 (1996)
[26] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. 133 (1986), no. 1, 425-430.; Nigmatullin, R. R., The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol., 133, 1, 425-430 (1986)
[27] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.; Podlubny, I., Fractional Differential Equations (1999) · Zbl 0918.34010
[28] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426-447.; Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 1, 426-447 (2011) · Zbl 1219.35367
[29] H. Scher and M. Lax, Stochastic transport in a disordered solid. I. Theory, Phys. Rev. B 7 (1973), no. 10, 4491-4502.; Scher, H.; Lax, M., Stochastic transport in a disordered solid. I. Theory, Phys. Rev. B, 7, 10, 4491-4502 (1973)
[30] H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12 (1975), no. 6, 2455-2477.; Scher, H.; Montroll, E. W., Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12, 6, 2455-2477 (1975)
[31] V. D. Stepanov, Weight inequalities of the Hardy type for fractional Riemann-Liouville integrals, Sib. Math. J. 31 (1990), no. 3, 513-522.; Stepanov, V. D., Weight inequalities of the Hardy type for fractional Riemann-Liouville integrals, Sib. Math. J., 31, 3, 513-522 (1990) · Zbl 0727.42007
[32] Z. Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), no. 2, 193-209.; Sun, Z. Z.; Wu, X. N., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[33] H. Wang and T. S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput. 34 (2012), no. 5, A2444-A2458.; Wang, H.; Basu, T. S., A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 34, 5, A2444-A2458 (2012) · Zbl 1256.35194
[34] M. Zayernouri, M. Ainsworth and G. E. Karniadakis, A unified Petrov-Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Engrg. 283 (2015), no. 1, 1545-1569.; Zayernouri, M.; Ainsworth, M.; Karniadakis, G. E., A unified Petrov-Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Engrg., 283, 1, 1545-1569 (2015) · Zbl 1425.65127
[35] M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J. Comput. Phys. 252 (2014), 495-517.; Zayernouri, M.; Karniadakis, G. E., Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J. Comput. Phys., 252, 495-517 (2014) · Zbl 1349.34095
[36] F. H. Zeng, Z. Q. Zhang and G. E. Karniadakis, Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations, J. Comput. Phys. 307 (2016), 15-33.; Zeng, F. H.; Zhang, Z. Q.; Karniadakis, G. E., Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations, J. Comput. Phys., 307, 15-33 (2016) · Zbl 1352.65278
[37] M. Zheng, F. Liu, V. Anh and I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Mod. 40 (2016), no. 7-8, 4970-4985.; Zheng, M.; Liu, F.; Anh, V.; Turner, I., A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Mod., 40, 7-8, 4970-4985 (2016) · Zbl 1459.65205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.