×

Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers. (English) Zbl 1430.65008

Summary: We study the acoustic Helmholtz equation with impedance boundary conditions formulated in terms of velocity, and analyze the stability and convergence properties of lowest-order Raviart-Thomas finite element discretizations. We focus on the high-wavenumber regime, where such discretizations suffer from the so-called “pollution effect”, and lack stability unless the mesh is sufficiently refined. We provide wavenumber-explicit mesh refinement conditions to ensure the well-posedness and stability of discrete scheme, as well as wavenumber-explicit error estimates. Our key result is that the condition “\(k^2 h\) is sufficiently small”, where \(k\) and \(h\) respectively denote the wavenumber and the mesh size, is sufficient to ensure the stability of the scheme. We also present numerical experiments that illustrate the theory and show that the derived stability condition is actually necessary.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

References:

[1] Adams, Ra; Fournier, Jj, Sobolev Spaces (2003), Cambridge: Academic Press, Cambridge · Zbl 1098.46001
[2] Babuška, I.; Sauter, Sa, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal., 34, 6, 2392-2423 (1997) · Zbl 0894.65050 · doi:10.1137/S0036142994269186
[3] Chaumont-Frelet, T.; Nicaise, S., High-frequency behaviour of corner singularities in Helmholtz problems, ESAIM Math. Model. Numer. Anal., 5, 1803-1845 (2018) · Zbl 1414.35053 · doi:10.1051/m2an/2018031
[4] Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems, IMA J. Numer. Anal. (2019). 10.1093/imanum/drz020 · Zbl 1465.65130
[5] Chaumont-Frelet, T.; Nicaise, S.; Pardo, D., Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics, SIAM J. Numer. Anal., 56, 4, 2288-2321 (2018) · Zbl 1397.65231 · doi:10.1137/16M1105566
[6] Ciarlet, Pg, The Finite Element Method for Elliptic Problems (2002), Philadelphia: SIAM, Philadelphia · doi:10.1137/1.9780898719208
[7] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2012), New York: Springer, New York · Zbl 1266.35121
[8] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory (2013), Philadelphia: SIAM, Philadelphia · Zbl 1291.35003 · doi:10.1137/1.9781611973167
[9] Costabel, M., A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, Math. Meth. Appl. Sci., 12, 365-368 (1990) · Zbl 0699.35028 · doi:10.1002/mma.1670120406
[10] Dauge, M., Elliptic Boundary Value Problems on Corner Domains (1988), New York: Springer, New York · Zbl 0668.35001 · doi:10.1007/BFb0086682
[11] Dhia, Ab-B; Duclairoir, E.; Legendre, G.; Mercier, J., Time-harmonic acoustic propagation in the presence of a shear flow, J. Comput. Appl. Math., 204, 428-439 (2007) · Zbl 1112.76068 · doi:10.1016/j.cam.2006.02.048
[12] Diaz, J.: Approches analytiques et numériques de problèmes de transmission en propagation d’ondes en régime transitoire. Application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, Ph.D. Thesis, Paris 6, (2005)
[13] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31, 139, 629-651 (1977) · Zbl 0367.65051 · doi:10.1090/S0025-5718-1977-0436612-4
[14] Ern, A.; Guermond, Jl, Mollification in strongly Lipshitz domains with application to continuous and discrete De Rham complexes, Comput. Methods Appl. Math., 16, 1, 51-75 (2016) · Zbl 1329.65041 · doi:10.1515/cmam-2015-0034
[15] Ern, A.; Guermond, Jl, Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions, Comput. Math. Appl., 75, 918-932 (2018) · Zbl 1409.65068 · doi:10.1016/j.camwa.2017.10.017
[16] Gastaldi, L., Mixed finite element methods in fluid structure systems, Numer. Math., 74, 153-176 (1996) · Zbl 0857.76041 · doi:10.1007/s002110050212
[17] Girault, V.; Raviart, Pa, Finite Element Methods for Navier-Stokes Equations (1986), New York: Springer, New York · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[18] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Boston: Pitman, Boston · Zbl 0695.35060
[19] Hetmaniuk, U., Stability estimates for a class of Helmholtz problems, Commun. Math. Sci., 5, 3, 665-678 (2007) · Zbl 1135.35323 · doi:10.4310/CMS.2007.v5.n3.a8
[20] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number. Part I: the \(h\)-version of the FEM, Comput. Math. Appl., 30, 9, 9-37 (1995) · Zbl 0838.65108 · doi:10.1016/0898-1221(95)00144-N
[21] Melenk, Jm; Sauter, S., Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49, 3, 1210-1243 (2011) · Zbl 1229.35038 · doi:10.1137/090776202
[22] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford: Oxford Science Publications, Oxford · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[23] Nédélec, Jc, Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[24] Payne, Le; Weinberger, Hf, An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., 5, 1, 286-292 (1960) · Zbl 0099.08402 · doi:10.1007/BF00252910
[25] Raviart, Pa; Thomas, Jm, A Mixed Finite Element Method for 2nd Order Elliptic Problems, Mathematical Aspect of Finite Element Methods (1977), New York: Springer, New York · Zbl 0362.65089
[26] Retka, S.; Marburg, S., An infinite element for the solution of Galbrun equation, Z. Angew. Math. Mech., 93, 2-3, 154-162 (2013) · Zbl 1372.76092 · doi:10.1002/zamm.201200021
[27] Schatz, Ah, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comput., 28, 128, 959-962 (1974) · Zbl 0321.65059 · doi:10.1090/S0025-5718-1974-0373326-0
[28] Schoberl, J.: Commuting quasi-interpolation operators for mixed finite elements, Technical report preprint ISC-01-10-MATH, Texas A & M Univertsity (2001)
[29] Singer, I.; Turkel, E., High-order finite difference methods for the Helmholtz equation, Comput. Methods Appl. Mech. Eng., 163, 343-358 (1998) · Zbl 0940.65112 · doi:10.1016/S0045-7825(98)00023-1
[30] Tartar, L., An Introduction to Sobolev Spaces and Interpolation Spaces (2007), New York: Springer, New York · Zbl 1126.46001
[31] Wang, X.; Bathe, K., On mixed elements for acoustic fluid-structure interactions, Math. Models Methods Appl. Sci., 7, 3, 329-343 (1997) · Zbl 0881.76053 · doi:10.1142/S0218202597000190
[32] Zhong, L.; Shu, S.; Wittum, G.; Xu, J., Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations, J. Comput. Math., 27, 5, 563-572 (2009) · Zbl 1212.65467 · doi:10.4208/jcm.2009.27.5.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.