×

On some properties of sparse sets: a survey. (English) Zbl 1535.42001

Beliaev, Dmitry (ed.) et al., International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 4. Sections 5–8. Berlin: European Mathematical Society (EMS). 3224-3248 (2023).
Summary: Sparse sets are, by definition, sets that are small, either in cardinality, measure, dimension, or density. Curves, surfaces, and other submanifolds are standard examples of sparse sets in Euclidean space. However, many sparse sets naturally occurring in ergodic and geometric measure theory, such as Cantor-like sets or self-similar fractals, lack the regularity of the aforementioned objects. Despite this deficiency, many sparse sets are rich in arithmetic, geometric, and analytic properties that can be viewed as working substitutes for smoothness. This has led to a vibrant line of inquiry into the governing principles behind certain phenomena that are typically associated with submanifolds and that have the potential for ubiquity in far more general contexts. Structural and analytical properties of sparse sets, whether discrete or continuous, lie at the center of many problems in harmonic analysis, fractal geometry, combinatorics, and number theory. This is a survey of a few such problems that the author has worked on.
For the entire collection see [Zbl 1532.00038].

MSC:

42-02 Research exposition (monographs, survey articles) pertaining to harmonic analysis on Euclidean spaces
28-02 Research exposition (monographs, survey articles) pertaining to measure and integration
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B25 Maximal functions, Littlewood-Paley theory
28A80 Fractals
58C40 Spectral theory; eigenvalue problems on manifolds
05D10 Ramsey theory
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems

References:

[1] N. Anantharaman, Entropy and the localization of eigenfunctions. Ann. of Math. (2) 168 (2008), no. 2, 435-475. · Zbl 1175.35036
[2] V. Aversa and D. Preiss, Hearts density theorems. Real Anal. Exchange 13 (1987), no. 1, 28-32.
[3] V. Aversa and D. Preiss, Sistemi di derivazione invarianti per affinita. Preprint (unpublished), Complesso Universitario di Monte S. Angelo, Napoli, 1995.
[4] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. 32 (1946), 331-332. · Zbl 0060.10302
[5] M. Bennett, A. Iosevich, and K. Taylor, Finite chains inside thin subsets of R d . Anal. PDE 9 (2016), no. 3, 597-614. · Zbl 1342.28006
[6] A. S. Besicovitch, Sets of fractional dimensions (IV): on rational approximation to real numbers. J. Lond. Math. Soc. 9 (1934), no. 2, 126-131. · JFM 60.0204.01
[7] C. Bluhm, Random recursive construction of Salem sets. Ark. Mat. 34 (1996), 51-63. · Zbl 0851.28005
[8] C. Bluhm, On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets. Ark. Mat. 36 (1998), no. 2, 307-316. · Zbl 1026.28004
[9] J. Bourgain, Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47 (1986), 69-85. · Zbl 0626.42012
[10] J. Bourgain, A Szemerédi type theorem for sets of positive density in R k . Israel J. Math. 54 (1986), no. 3, 307-316. · Zbl 0609.10043
[11] J. Bourgain and Z. Rudnick, Restriction of toral eigenfunctions to hypersurfaces and nodal sets. Geom. Funct. Anal. 22 (2012), 878-937. · Zbl 1276.53047
[12] J. D. Bovey and M. M. Dodson, The Hausdorff dimension of systems of linear forms. Acta Arith. 45 (1986), no. 4, 337-358. · Zbl 0534.10025
[13] N. Burq, P. Gérard, and N. Tzetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 255-301. · Zbl 1116.35109
[14] N. Burq, P. Gérard, and N. Tzetkov, Restrictions of the Laplace-Beltrami eigen-functions to submanifolds. Duke Math. J. 138 (2007), no. 3, 445-487. · Zbl 1131.35053
[15] V. Chan, I. Łaba, and M. Pramanik, Point configurations in sparse sets. J. Anal. Math. 128 (2016), no. 1, 289-335. · Zbl 1375.28008
[16] X. Chen, Sets of Salem type and sharpness of the L 2 -Fourier restriction theorem. Trans. Amer. Math. Soc. 368 (2016), no. 3, 1959-1977. · Zbl 1336.42003
[17] X. Chen and A. Seeger, Convolution powers of Salem measures with applications. Canad. J. Math. 69 (2017), no. 2, 284-320. · Zbl 1375.42002
[18] X. Chen and C. Sogge, A few endpoint geodesic restriction estimates for eigen-functions. Comm. Math. Phys. 329 (2014), 435-459. · Zbl 1293.58011
[19] M. Christ, A. Nagel, E. M. Stein, and S. Wainger, Singular and maximal Radon transforms: analysis and geometry. Ann. of Math. 150 (1999), 489-577. · Zbl 0960.44001
[20] Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien. Comm. Math. Phys. 102 (1985), 497-502. · Zbl 0592.58050
[21] B. Cook and Á. Magyar, On restricted arithmetic progressions over finite fields. Online J. Anal. Comb. 7 (2012), 1-10. · Zbl 1292.11022
[22] B. Cook, Á. Magyar, and M. Pramanik, A Roth-type theorem for dense subsets of R d . Bull. Lond. Math. Soc. 49 (2017), no. 4, 676-689. · Zbl 1370.05210
[23] J. Denson, M. Pramanik, and J. Zahl, Large sets avoiding rough patterns. 2019, arXiv:1904.02337. Springer volume “Harmonic Analysis and Applications”, edited by Michail Rassias.
[24] H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory. Proc. Lond. Math. Soc. 54 (1952), no. 2, 42-93. · Zbl 0045.16603
[25] F. Ekström, Fourier dimension of random images. Ark. Mat. 54 (2016), no. 2, 455-471. · Zbl 1361.42008
[26] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and E. G. Straus, Euclidean Ramsey theorems. J. Combin. Theory Ser. A 14 (1973), 341-363. · Zbl 0276.05001
[27] S. Eswarathasan and M. Pramanik, Restriction of Laplace-Beltrami eigen-functions to arbitrary sets on manifolds. Int. Math. Res. Not. rnaa167 (2020), DOI 10.1093/imrn/rnaa167. · Zbl 1496.58011 · doi:10.1093/imrn/rnaa167
[28] K. Falconer, Fractal geometry: mathematical foundations and applications. 1st edn., Wiley Brothers, 1990. · Zbl 0689.28003
[29] K. Falconer and J. Marstrand, Plane sets with positive density at infinity contain all large distances. Bull. Lond. Math. Soc. 18 (1986), no. 5, 471-474. · Zbl 0599.28008
[30] R. Fraser and M. Pramanik, Large sets avoiding patterns. Anal. PDE 11 (2018), no. 5, 1083-1111. · Zbl 1388.28006
[31] H. Furstenberg, Y. Katznelson, and B. Weiss, Ergodic theory and configurations in sets of positive density. In Mathematics of Ramsey theory, pp. 184-198, Springer, Berlin-Heidelberg, 1990. · Zbl 0738.28013
[32] P. Gérard and É. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71 (1993), 559-607. · Zbl 0788.35103
[33] R. L. Graham, Recent trends in Euclidean Ramsey theory. Discrete Math. 136 (1994), 119-127. · Zbl 0816.05060
[34] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory. 2nd edn., John Wiley, New York, 1990. · Zbl 0705.05061
[35] A. Greenleaf and A. Iosevich, On triangles determined by subsets of the Euclidean plane, the associated bilinear operators and applications to discrete geometry. Anal. PDE 5 (2012), no. 2, 397-409. · Zbl 1275.28003
[36] A. Greenleaf, A. Iosevich, B. Liu, and E. Palsson, A group-theoretic viewpoint on Erdős-Falconer problems and the Mattila integral. Rev. Mat. Iberoam. 31 (2015), no. 3, 799-810. · Zbl 1329.52015
[37] A. Greenleaf, A. Iosevich, and M. Pramanik, On necklaces inside thin subsets of R d . Math. Res. Lett. 24 (2017), no. 2, 347-362. · Zbl 1390.28020
[38] K. Hambrook, Explicit Salem sets in R 2 . Adv. Math. 311 (2017), 634-648. · Zbl 1421.11059
[39] K. Hambrook, Explicit Salem sets and applications to metrical Diophantine approximation. Trans. Amer. Math. Soc. 371 (2019), no. 6, 4353-4376. · Zbl 1428.11134
[40] V. Harangi, T. Keleti, G. Kiss, P. Maga, A. Mathé, P. Mattila, and B. Strenner, How large dimension guarantees a given angle? Monatsh. Math. 171 (2013), no. 2, 169-187. · Zbl 1279.28009
[41] B. Helffer, A. Martinez, and D. Robert, Ergodicité et limite semi-classique. Comm. Math. Phys. 109 (1987), 313-326. · Zbl 0624.58039
[42] K. Henriot, I. Łaba, and M. Pramanik, On polynomial configurations in fractal sets. Anal. PDE 9 (2016), no. 5, 1153-1184. · Zbl 1420.28003
[43] L. Hörmander, Spectral function of an elliptic operator. Acta Math. 121 (1968), 193-218. · Zbl 0164.13201
[44] R. Hu, L p norm estimates of eigenfunctions restricted to submanifolds. Forum Math. 21 (2009), 1021-1052. · Zbl 1187.35147
[45] A. Iosevich and E. Sawyer, Maximal averages over surfaces. Adv. Math. 132 (1997), 46-119. · Zbl 0921.42015
[46] A. Iosevich and E. Sawyer, Three problems motivated by the average decay of the Fourier transform. In Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), pp. 205-215, Contemp. Math. 320, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1038.42020
[47] V. Jarník, Diophantischen Approximationen und Hausdorffsches Mass. Mat. Sb. 36 (1929), 371-382. · JFM 55.0719.01
[48] V. Jarník, Über die simultanen diophantischen Approximationen (German). Math. Z. 33 (1931), no. 1, 505-543. · JFM 57.1370.01
[49] J. P. Kahane, Images browniennes des ensembles parfaits. C. R. Acad. Sci. Paris, Sér. A-B 263 (1966), A613-A615. · Zbl 0158.35703
[50] J. P. Kahane, Images d’ensembles parfaits par des séries de Fourier gaussiennes. C. R. Acad. Sci. Paris, Sér. A-B 263 (1966), A678-A681. · Zbl 0158.35704
[51] R. Kaufman, On the theorem of Jarník and Besicovitch. Acta Arith. 39 (1981), 265-267. · Zbl 0468.10031
[52] T. Keleti, A 1-dimensional subset of the reals that intersects each of its translates in at most a single point. Real Anal. Exchange 24 (1998/1999), no. 2, 843-844. · Zbl 0971.28001
[53] T. Keleti, Construction of one-dimensional subsets of the reals not containing sim-ilar copies of given patterns. Anal. PDE 1 (2008), no. 1, 29-33. · Zbl 1151.28302
[54] H. Koch, D. Tataru, and M. Zworski, Semiclassical L p estimates. Ann. Henri Poincaré 5 (2007), 885-916. · Zbl 1133.58025
[55] T. Körner, Measure on independent sets, a quantitative version of a theorem of Rudin. Proc. Amer. Math. Soc. 135 (2007), no. 12, 3823-3832. · Zbl 1135.42002
[56] T. Körner, Fourier transforms of measures and algebraic relations on their support. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 4, 1291-1319. · Zbl 1179.42004
[57] I. Łaba, Maximal operators and decoupling for ƒ.p/ Cantor measures. 2018, arXiv:1808.05657.
[58] I. Łaba and M. Pramanik, Arithmetic progressions in sets of fractional dimension. Geom. Funct. Anal. 19 (2009), no. 2, 429-456. · Zbl 1184.28010
[59] I. Łaba and M. Pramanik, Maximal operators and differentiation theorems for sparse sets. Duke Math. J. 158 (2011), no. 3, 347-410. · Zbl 1242.42011
[60] Y. Liang and M. Pramanik, Fourier analysis and avoidance of linear patterns. 2020, arXiv:2006.10941.
[61] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2) 163 (2006), 165-219. · Zbl 1104.22015
[62] P. Maga, Full dimensional sets without given patterns. Real Anal. Exchange 36 (2010/2011), 79-90. · Zbl 1246.28005
[63] A. Máthé, Sets of large dimension not containing polynomial configurations. Adv. Math. 316 (2017), 691-709. · Zbl 1371.28007
[64] P. Mattila, Geometry of sets and measures in Euclidean space, Cambridge Stud. Adv. Math., Cambridge Univ. Press, Cambridge, 1995. · Zbl 0819.28004
[65] G. Mockenhaupt, A. Seeger, and C. Sogge, Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. of Math. 136 (1992), 207-218. · Zbl 0759.42016
[66] A. Nagel, A. Seeger, and S. Wainger, Averages over convex hypersurfaces. Amer. J. Math. 115 (1993), 903-927. · Zbl 0832.42010
[67] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms I. Acta Math. 157 (1986), 99-157. · Zbl 0622.42011
[68] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms II. Invent. Math. 86 (1986), 75-113. · Zbl 0656.42009
[69] D. Preiss, Lectures given in Ravello, 1985. Unpublished.
[70] A. Reznikov, Norms of geodesic restrictions for eigenfunctions on hyperbolic sur-faces and representation theory. Unpublished update to a work from 2005. 2010, arXiv:math/0403437v3.
[71] K. Roth, On certain sets of integers. J. Lond. Math. Soc. 28 (1953), 104-109. · Zbl 0050.04002
[72] K. Roth, Irregularities of sequences relative to arithmetic progressions, IV. Period. Math. Hungar. 2 (1972), 301-306. · Zbl 0252.10051
[73] J. L. Rubio de Francia, Maximal functions and Fourier transforms. Duke Math. J. 53 (1986), 395-404. · Zbl 0612.42008
[74] Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys. 161 (1994), no. 1, 195-213. · Zbl 0836.58043
[75] I. Ruzsa, Solving a linear equation in a set of integers I. Acta Arith. 65 (1993), no. 3, 259-282. · Zbl 1042.11525
[76] I. Ruzsa, Solving a linear equation in a set of integers II. Acta Arith. 72 (1995), no. 4, 385-397. · Zbl 1044.11617
[77] R. Salem, On singular monotonic functions whose spectrum has a given Haus-dorff dimension. Ark. Mat. 1 (1951), no. 4, 353-365. · Zbl 0054.03001
[78] R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetical progression. Proc. Natl. Acad. Sci. USA 28 (1942), 561-563. · Zbl 0060.10301
[79] P. Sarnak, Arithmetic quantum chaos. In The Schur lectures (Tel Aviv, 1992), pp. 183-236, Israel Math. Conf. Proc. 8, Bar-Ilan Univ., Ramat Gan, Israel, 1995. · Zbl 0831.58045
[80] P. Shmerkin, Salem sets with no arithmetic progressions. Int. Math. Res. Not. 7 (2017), 1929-1941. · Zbl 1405.11011
[81] P. Shmerkin and V. Suomala, Spatially independent martingales, intersections, and applications. Mem. Amer. Math. Soc. 251 (2018), no. 1195, v+102 pp. · Zbl 1435.60005
[82] P. Shmerkin and V. Suomala, New bounds on Cantor maximal operators. 2021, arXiv:2106.14818.
[83] A. I. Shnirelman, Ergodic properties of eigenfunctions. Uspekhi Mat. Nauk 29 (1974), no. 6, 181-182 (in Russian). · Zbl 0324.58020
[84] D. Simmons, A Hausdorff measure version of the Jarník-Schmidt theorem in Dio-phantine approximation. Math. Proc. Cambridge Philos. Soc. 164 (2018), no. 3, 413-459. · Zbl 1429.11140
[85] C. Sogge, Oscillatory integrals and spherical harmonics. Duke Math. J. 53 (1986), 43-65. · Zbl 0636.42018
[86] C. Sogge, Concerning the L p norms of spectral clusters of second-order elliptic operators on compact manifolds. J. Funct. Anal. 77 (1988), 123-138. · Zbl 0641.46011
[87] C. Sogge, Fourier integrals in classical analysis. Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, 1993. · Zbl 0783.35001
[88] C. Sogge and E. M. Stein, Averages of functions over hypersurfaces in R n . Invent. Math. 82 (1985), 543-556. · Zbl 0626.42009
[89] C. Sogge and E. M. Stein, Averages over hypersurfaces II. Invent. Math. 86 (1986), 233-242. · Zbl 0656.42012
[90] E. M. Stein, Maximal functions: spherical means. Proc. Natl. Acad. Sci. USA 73 (1976), 2174-2175. · Zbl 0332.42018
[91] E. M. Stein, Harmonic analysis. Princeton Univ. Press, Princeton, 1993. · Zbl 0821.42001
[92] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature. Bull. Amer. Math. Soc. 84 (1978), 1239-1295. · Zbl 0393.42010
[93] E. Szemerédi, On sets of integers containing no 4 elements in arithmetic progres-sion. Acta Math. Sci. Hung. 20 (1969), 89-104. · Zbl 0175.04301
[94] E. Szemerédi, On sets of integers containing no k elements in arithmetic progres-sion. Acta Arith. Collection of articles in memory of Juriĭ Vladimirovič Linnik 27 (2015), 199-245. · Zbl 0303.10056
[95] M. Tacy, Semiclassical L p estimates of quasimodes on submanifolds. Comm. Par-tial Differential Equations 35 (2010), no. 8, 1538-1562. · Zbl 1205.35352
[96] P. Tomas, A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81 (1975), 477-478. · Zbl 0298.42011
[97] B. L. van der Waerden, Beweis einer Baudetschen Vermutung. Nieuw Arch. Wiskd. 15 (1927), 212-216. · JFM 53.0073.12
[98] P. Yung, Spectral projection theorems on compact manifolds. Lecture notes, avail-able under “Notes/Slides” at https://maths-people.anu.edu.au/ plyung/Sogge.pdf.
[99] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic sur-faces. Duke Math. J. 55 (1987), 919-941. · Zbl 0643.58029
[100] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys. 175, 673-682 (199. Malabika Pramanik Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver BC V6T 1Z2, Canada, malabika@math.ubc.ca · Zbl 0840.58048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.