×

Maximal operators and differentiation theorems for sparse sets. (English) Zbl 1242.42011

Let \(\mathbf{S}=\{S_k\}\) be a sequence of measurable subsets of \(\mathbb{R}\) and \(\mu\) be a probability measure in \(\mathbb{R}\) . The maximal operators, associated to \(\mathbf{S}\) and \(\mu\) respectively, are defined as follows \[ M_\mathbf{S}(f)(x) =\sup_{r>0,k\in \mathbb{N} }\frac{1}{|S_k|}\int_{S_k}|f(x+ry)|dy, \]
\[ M_\mu(f)(x) =\sup_{r>0}\int|f(x+ry)|d\mu(y). \] For any \(\varepsilon \in [0,1/3)\) the authors prove the existence of a decreasing sequence of sets \(\mathbf{S}=\{S_k\}\) with the properties:
(a)
\(S_k\subset[1,2]\).
(b)
Each \(S_k\) is a disjoint union of finitely many intervals.
(c)
\(|S_k|\rightarrow 0 (k\rightarrow\infty)\).
(d)
The weak-\(\ast\) limit \(\mu\) of the densities \(\mathbf{1}_{S_k}/|S_k|\) exists.
(e)
\(\bigcap_{k=1}^{\infty}S_k \) has Hausdorff dimension \(1-\varepsilon\).
(f)
The maximal operators \(M_\mathbf{S}\) and \(M_\mu\) are bounded on \(L^{p}(\mathbb{R})\) for any \(p>\frac{1+\varepsilon}{1-\varepsilon}\).
From this result, as a corollary, a differentiation theorem is obtained for averages on \(rS_k\) and with respect to \(\mu\): for every \(f\in L^{p}(\mathbb{R})\) with \(p>\frac{1+\varepsilon}{1-\varepsilon}\), \[ \lim_{r\rightarrow 0} \sup\limits_{k}\big| \frac{1}{r|S_k|}\int_{x+r S_k}f(y)dy-f(x)\big|=0 \] and \[ \lim_{r\rightarrow 0} \big| \int f(x+ry)d\mu(y) -f(x)\big|=0 \] for a.e. \(x\in\mathbb{R}\).
The last result gives a positive answer to a question of Aversa and Preiss on differentiation theorems for averages over sparse one dimensional sets.
Some other generalizations and corollaries are also given.
Complicated proofs combine probabilistic techniques with the methods developed in multidimensional harmonic analysis.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
26A99 Functions of one variable
28A78 Hausdorff and packing measures

References:

[1] N. Alon and J. H. Spencer, The Probabilistic Method , 2nd ed., Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 2000. · Zbl 0996.05001
[2] V. Aversa and D. Preiss, Hearts density theorems , Real Anal. Exchange 13 (1987), 28-32.
[3] -, Sistemi di derivazione invarianti per affinita , preprint, Complesso Universitario di Monte S. Angelo, Napoli, 1995.
[4] C. Bennett and R. Sharpley, Interpolation of Operators , Pure Appl. Math. 129 , Academic Press, Boston, 1988. · Zbl 0647.46057
[5] C. Bluhm, Random recursive construction of Salem sets , Ark. Mat. 34 (1996), 51-63. · Zbl 0851.28005 · doi:10.1007/BF02559506
[6] -, On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets , Ark. Mat. 36 (1998), 307-316. · Zbl 1026.28004 · doi:10.1007/BF02384771
[7] J. Bourgain, Averages in the plane over convex curves and maximal operators , J. Analyse Math. 47 (1986), 69-85. · Zbl 0626.42012 · doi:10.1007/BF02792533
[8] A. M. Bruckner, Differentiation of integrals , Amer. Math. Monthly 78 (1971), 1-51. · Zbl 0225.28002 · doi:10.2307/2317758
[9] M. Christ, Endpoint bounds for singular fractional integral operators , preprint, 1988.
[10] M. Christ, A. Nagel, E. M. Stein, and S. Wainger, Singular and maximal Radon transforms: Analysis and geometry , Ann. of Math. (2) 150 (1999), 489-577. JSTOR: · Zbl 0960.44001 · doi:10.2307/121088
[11] M. Csörnyei, Density theorems revisited , Acta Sci. Math. (Szeged) 64 (1998), 59-65. · Zbl 0917.26004
[12] M. De Guzman, Differentiation of integrals in \(\rr^n\) , Lecture Notes in Math. 481 , Springer, Berlin, 1975. · Zbl 0327.26010 · doi:10.1007/BFb0081986
[13] J. Duoandikoetxea and J. Rubio De Francia, Maximal and singular integral operators via Fourier transform estimates , Invent. Math. 84 (1986), 541-561. · Zbl 0568.42012 · doi:10.1007/BF01388746
[14] K. J. Falconer, The Geometry of Fractal Sets , Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, 1986. · Zbl 0599.28009
[15] -, Fractal Geometry: Mathematical Foundations and Applications , 2nd ed., Wiley, Hoboken, N.J., 2003.
[16] W. T. Gowers, A new proof of Szemerédi’s theorem , Geom. Funct. Anal. 11 (2001), 465-588. · Zbl 1028.11005 · doi:10.1007/s00039-001-0332-9
[17] B. Green, Arithmetic progressions in sumsets , Geom. Funct. Anal. 12 (2002), 584-597. · Zbl 1020.11009 · doi:10.1007/s00039-002-8258-4
[18] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions , Ann. of Math. (2) 167 (2008), 481-547. · Zbl 1191.11025 · doi:10.4007/annals.2008.167.481
[19] A. Greenleaf, A. Seeger, and S. Wainger, On \(X\)-ray transforms for rigid line complexes and integrals over curves in \(\mathbb R^4\) , Proc. Amer. Math. Soc. 127 (1999), 3533-3545. JSTOR: · Zbl 0934.44003 · doi:10.1090/S0002-9939-99-05379-4
[20] G. Hardy and J. Littlewood, A maximal theorem with function-theoretic applications , Acta Math. 54 (1930), 81-116. · JFM 56.0264.02 · doi:10.1007/BF02547518
[21] C. A. Hayes and C. Y. Pauc, Derivation and Martingales , Springer, Berlin, 1970. · Zbl 0192.40604
[22] A. Iosevich and E. Sawyer, Maximal averages over surfaces , Adv. Math. 132 (1997), 46-119. · Zbl 0921.42015 · doi:10.1006/aima.1997.1678
[23] -, “Three problems motivated by the average decay of the Fourier transform” in Harmonic Analysis at Mount Holyoke (South Hadley, Mass., 2001) , Contemp. Math. 320 , Amer. Math. Soc., Providence, 2003, 205-215. · Zbl 1038.42020
[24] J.-P. Kahane, Some Random Series of Functions , 2nd ed., Cambridge Univ. Press, Cambridge, 1985. · Zbl 0571.60002
[25] R. Kaufman, On the theorem of Jarník and Besicovitch , Acta Arith. 39 (1981), 265-267. · Zbl 0468.10031
[26] I. łaba and M. Pramanik, Arithmetic progressions in sets of fractional dimension , Geom. Funct. Anal. 19 (2009), 429-456. · Zbl 1184.28010 · doi:10.1007/s00039-009-0003-9
[27] P. Mattila, Geometry of sets and measures in Euclidean spaces , Cambridge Stud. Adv. Math. 44 , Cambridge Univ. Press, Cambridge, 1995. · Zbl 0819.28004
[28] G. Mockenhaupt, Salem sets and restriction properties of Fourier transforms , Geom. Funct. Anal. 10 (2000), 1579-1587. · Zbl 0974.42013 · doi:10.1007/PL00001662
[29] M. Molloy and B. Reed, Graph colouring and the probabilistic method , Springer, Berlin, 2002. · Zbl 0987.05002
[30] A. Nagel, A. Seeger, and S. Wainger, Averages over convex hypersurfaces , Amer. J. Math. 115 (1993), 903-927. JSTOR: · Zbl 0832.42010 · doi:10.2307/2375017
[31] A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions , Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1060-1062. · Zbl 0391.42015 · doi:10.1073/pnas.75.3.1060
[32] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I , Acta Math. 157 (1986), 99-157. · Zbl 0622.42011 · doi:10.1007/BF02392592
[33] -, Hilbert integrals, singular integrals, and Radon transforms, II , Invent. Math. 86 (1986), 75-113. · Zbl 0656.42009 · doi:10.1007/BF01391496
[34] D. Preiss, Lectures given in Ravello, Italy, 1985, unpublished.
[35] J. L. Rubio De Francia, Maximal functions and Fourier transforms , Duke Math. J. 53 (1986), 395-404. · Zbl 0612.42008 · doi:10.1215/S0012-7094-86-05324-X
[36] W. Rudin, Real and Complex Analysis , 3rd ed., McGraw-Hill, New York, 1987. · Zbl 0925.00005
[37] R. Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension , Ark. Mat. 1 (1951), 353-365. · Zbl 0054.03001 · doi:10.1007/BF02591372
[38] W. Schlag, A geometric proof of Bourgain’s circular maximal theorem , Duke. Math. J. 93 (1998), 505-533. · Zbl 0942.42010 · doi:10.1215/S0012-7094-98-09318-8
[39] -, “\(L^p\to L^q\) estimates for the circular maximal function” in Topics in Analysis and Its Applications: Selected Theses , World Sci. Publ., River Edge, N.J., 2000, 1-59. · Zbl 0981.42012 · doi:10.1142/9789812813305_0001
[40] C. Sogge and E. M. Stein, Averages of functions over hypersurfaces in \(\rr^n\) , Invent. Math. 82 (1985), 543-556. · Zbl 0626.42009 · doi:10.1007/BF01388869
[41] -, Averages over hypersurfaces, II , Invent. Math. 86 (1986), 233-242. · Zbl 0656.42012 · doi:10.1007/BF01389070
[42] E. M. Stein, Maximal functions, I: Spherical means , Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175. JSTOR: · Zbl 0332.42018 · doi:10.1073/pnas.73.7.2174
[43] -, “Oscillatory integrals in Fourier analysis” in Beijing Lectures in Harmonic Analysis , Ann. of Math. Stud. 112 , Princeton Univ. Press, Princeton, N.J., 1986, 307-355. · Zbl 0618.42006
[44] -, Harmonic Analysis , Princeton Math. Ser. 43 , Princeton Univ. Press, Princeton, N.J., 1993. · Zbl 0821.42001
[45] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature , Bull. Amer. Math. Soc. 84 (1978), 1239-1295. · Zbl 0393.42010 · doi:10.1090/S0002-9904-1978-14554-6
[46] J. A. Wellner, Notes on exponential bounds via Azuma’s inequality , preprint, 2004.
[47] N. Wiener, The ergodic theorem , Duke Math. J. 5 (1939), 1-18. · Zbl 0021.23501 · doi:10.1215/S0012-7094-39-00501-6
[48] T. H. Wolff, Lectures on Harmonic Analysis , Univ. Lecture Ser. 29 , Amer. Math. Soc., Providence, 2003. \endthebibliography · Zbl 1041.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.