×

Recent trends in Euclidean Ramsey theory. (English) Zbl 0816.05060

The paper surveys several new results in Euclidean Ramsey theory. A finite set \(X\) in some Euclidean space \(E^k\) is called Ramsey if for all \(r\) there exists some \(N= N(X, r)\) such that for every partition of \(E^N\) into \(r\) subsets, some of these subsets contain a congruent copy of \(X\). Basic results concerning the unsolved question on the characterization of Ramsey sets are discussed. Also the question on the restriction to spheres is addressed. Moreover, density theorems, partition variants, results on the chromatic number of \(E^n\) (two points are joined by an edge if their distance is 1) and partition theorems in fixed dimension together with difficult conjectures are presented.

MSC:

05D10 Ramsey theory
52C10 Erdős problems and related topics of discrete geometry
Full Text: DOI

References:

[1] Bourgain, J., A Szemerédi type theorem for sets of positive density in R\(^k\), Israel J. Math., 54, 307-316 (1986) · Zbl 0609.10043
[2] Erdős, P.; Graham, R. L.; Montgomery, P.; Rothschild, B. L.; Spencer, J. H.; Straus, E. G., Euclidean Ramsey theorems, J. Combin. Theory Ser. A, 14, 341-363 (1973) · Zbl 0276.05001
[3] Erdős, P.; Graham, R. L.; Montgomery, P.; Rothschild, B. L.; Spencer, J. H.; Straus, E. G., Euclidean Ramsey theorems II, (Hajnal, A.; Rado, R.; Sós, V., Infinite and Finite Sets I (1975), North-Holland: North-Holland Amsterdam), 529-557 · Zbl 0313.05002
[4] Erdős, P.; Graham, R. L.; Montgomery, P.; Rothschild, B. L.; Spencer, J. H.; Straus, E. G., Euclidean Ramsey theorems III, (Hajnal, A.; Rado, R.; Sós, V., Infinite and Finite Sets II (1975), North-Holland: North-Holland Amsterdam), 559-583 · Zbl 0313.05002
[5] Frankl, P.; Rödl, V., A partition property of simplices in Euclidean space, J. Amer. Math. Soc., 3, 1-7 (1990) · Zbl 0696.05014
[6] Frankl, P.; Wilson, R. M., Intersection theorems with geometric consequences, Combinatorica, 1, 357-368 (1981) · Zbl 0498.05048
[7] H. Furstenberg, personal communication.; H. Furstenberg, personal communication.
[8] Furstenberg, H., Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d’Anal. Math., 31, 204-256 (1977) · Zbl 0347.28016
[9] H. Furstenberg, Y. Katznelson and B. Weiss, Ergodic theory and configurations in sets of positive density (preprint).; H. Furstenberg, Y. Katznelson and B. Weiss, Ergodic theory and configurations in sets of positive density (preprint). · Zbl 0738.28013
[10] Graham, R. L., On partitions of E\(^n\), J. Combin. Theory Ser. A, 28, 89-97 (1980) · Zbl 0428.05004
[11] Graham, R. L., Euclidean Ramsey theorems on the \(n\)-sphere, J. Graph Theory, 7, 105-114 (1983) · Zbl 0507.05045
[12] Graham, R. L., Topics in Euclidean Ramsey Theory, (Nešetřil, J.; Rödl, V., Mathematics of Ramsey Theory (1980), Springer: Springer Heidelberg) · Zbl 0816.05060
[13] Graham, R. L.; Rothschild, B. L.; Spencer, J. H., (Ramsey Theory (1990), John: John New York) · Zbl 0705.05061
[14] Křiž, I., Permutation groups in Euclidean Ramsey Theory, Proc. Amer. Math. Soc., 112, 899-907 (1991) · Zbl 0754.05071
[15] K. Kunen, personal communication.; K. Kunen, personal communication.
[16] J. Matoušek and V. Rödl, On Ramsey sets on spheres, preprint.; J. Matoušek and V. Rödl, On Ramsey sets on spheres, preprint.
[17] Shelah, S., Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc., 1, 683-697 (1988) · Zbl 0649.05010
[18] Soifer, A., Chromatic number of the plane: A historical essay, Geombinatorics, 1, 13-15 (1991) · Zbl 0853.05038
[19] Straus, E. G., A combinatorial theorem in group theory, Math. Comp., 29, 303-309 (1975) · Zbl 0294.20029
[20] Szemerédi, E., On sets of integers containing no \(k\) elements in arithmetic progression, Acta Arith., 27, 199-245 (1975) · Zbl 0303.10056
[21] van der Waerden, B. L., Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk., 15, 212-216 (1927) · JFM 53.0073.12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.