×

Vector-borne disease models with Lagrangian approach. (English) Zbl 1534.92073

Summary: We develop a multi-group and multi-patch model to study the effects of population dispersal on the spatial spread of vector-borne diseases across a heterogeneous environment. The movement of host and/or vector is described by Lagrangian approach in which the origin or identity of each individual stays unchanged regardless of movement. The basic reproduction number \(\mathcal{R}_0\) of the model is defined and the strong connectivity of the host-vector network is succinctly characterized by the residence times matrices of hosts and vectors. Furthermore, the definition and criterion of the strong connectivity of general infectious disease networks are given and applied to establish the global stability of the disease-free equilibrium. The global dynamics of the model system are shown to be entirely determined by its basic reproduction number. We then obtain several biologically meaningful upper and lower bounds on the basic reproduction number which are independent or dependent of the residence times matrices. In particular, the heterogeneous mixing of hosts and vectors in a homogeneous environment always increases the basic reproduction number. There is a substantial difference on the upper bound of \(\mathcal{R}_0\) between Lagrangian and Eulerian modeling approaches. When only host movement between two patches is concerned, the subdivision of hosts (more host groups) can lead to a larger basic reproduction number. In addition, we numerically investigate the dependence of the basic reproduction number and the total number of infected hosts on the residence times matrix of hosts, and compare the impact of different vector control strategies on disease transmission.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Allen, LJS; Bolker, BM; Lou, Y.; Nevai, AL, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67, 5, 1283-1309 (2007) · Zbl 1121.92054 · doi:10.1137/060672522
[2] Arino, J.; Ma, Z.; Zhou, Y.; Wu, J., Diseases in metapopulations, Modeling and dynamics of infectious diseases, Ser. Contemp. Appl. Math., 64-122 (2009), Singapore: World Scientific, Singapore · doi:10.1142/9789814261265_0003
[3] Auger, P.; Kouokam, E.; Sallet, G.; Tchuente, M.; Tsanou, B., The Ross-Macdonald model in a patchy environment, Math. Biosci., 216, 123-131 (2008) · Zbl 1153.92026 · doi:10.1016/j.mbs.2008.08.010
[4] Berman, A.; Plemmons, RJ, Nonnegative matrices in the mathematical sciences (1994), Philadelphia: SIAM, Philadelphia · Zbl 0815.15016 · doi:10.1137/1.9781611971262
[5] Bichara, D.; Castillo-Chavez, C., Vector-borne diseases models with residence times—a Lagrangian perspective, Math. Biosci., 281, 128-138 (2016) · Zbl 1348.92144 · doi:10.1016/j.mbs.2016.09.006
[6] Bichara, D.; Holechek, SA; Velázquez-Castro, J.; Murillo, AL; Castillo-Chavez, C., On the dynamics of dengue virus type 2 with residence times and vertical transmission, Lett. Biomath., 3, 1, 140-160 (2016) · doi:10.30707/LiB3.1Bichara
[7] Bichara, D.; Iggidr, A., Multi-patch and multi-group epidemic models: a new framework, J. Math. Biol., 77, 107-134 (2018) · Zbl 1392.92095 · doi:10.1007/s00285-017-1191-9
[8] Bichara, D.; Iggidr, A.; Yacheur, S., Effects of heterogeneity and global dynamics of weakly connected subpopulations, Math. Model. Nat. Phenom., 16, 44 (2021) · Zbl 1471.92288 · doi:10.1051/mmnp/2021034
[9] Bichara, D.; Kang, Y.; Castillo-Chavez, C.; Horan, R.; Perrings, C., SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol., 77, 11, 2004-2034 (2015) · Zbl 1339.92078 · doi:10.1007/s11538-015-0113-5
[10] Castillo-Chavez, C.; Bichara, D.; Morin, BR, Perspectives on the role of mobility, behavior, and time scales in the spread of diseases, Proc. Natl. Acad. Sci. U. S. A., 113, 51, 14582-14588 (2016) · doi:10.1073/pnas.1604994113
[11] Castillo-Chavez, C.; Thieme, HR; Arino, O.; Axelrod, DE; Kimmel, M.; Langlais, M., Asymptotically autonomous epidemic models, Mathematical population dynamics: analysis of heterogeneity, 33-50 (1995), Winnipeg: Wuerz, Winnipeg
[12] Chen, X.; Gao, D., Effects of travel frequency on the persistence of mosquito-borne diseases, Discrete Contin. Dyn. Syst. Ser. B, 25, 12, 4677-4701 (2020) · Zbl 1469.92105
[13] Chinazzi, M.; Davis, JT; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Piontti, AP; Mu, K.; Rossi, L.; Sun, K.; Viboud, C.; Xiong, X.; Yu, H.; Halloran, ME; Longini, IM Jr; Vespignani, A., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science, 368, 6489, 395-400 (2020) · doi:10.1126/science.aba9757
[14] Citron, DT; Guerra, CA; Dolgert, AJ; Wu, SL; Henry, JM; Sánchez, HM; Smith, DL, Comparing metapopulation dynamics of infectious diseases under different models of human movement, Proc. Natl. Acad. Sci. U. S. A., 118, 18, e2007488118 (2021) · doi:10.1073/pnas.2007488118
[15] Cosner, C.; Beier, JC; Cantrell, RS; Impoinvil, D.; Kapitanski, L.; Potts, MD; Troyo, A.; Ruan, S., The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258, 4, 550-560 (2009) · Zbl 1402.92386 · doi:10.1016/j.jtbi.2009.02.016
[16] Diekmann, O.; Heesterbeek, JAP; Metz, JAJ, On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 4, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[17] Diekmann, O.; Heesterbeek, JAP; Roberts, MG, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7, 873-885 (2010) · doi:10.1098/rsif.2009.0386
[18] Ducrot, A.; Sirima, SB; Somé, B.; Zongo, P., A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host, J. Biol. Dyn., 3, 6, 574-598 (2009) · Zbl 1315.92076 · doi:10.1080/17513750902829393
[19] Dye, C.; Hasibeder, G., Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others, Trans. R. Soc. Trop. Med. Hyg., 80, 1, 69-77 (1986) · doi:10.1016/0035-9203(86)90199-9
[20] Gao, D., Travel frequency and infectious diseases, SIAM J. Appl. Math., 79, 4, 1581-1606 (2019) · Zbl 1421.92032 · doi:10.1137/18M1211957
[21] Gao, D., How does dispersal affect the infection size?, SIAM J. Appl. Math., 80, 5, 2144-2169 (2020) · Zbl 1453.92297 · doi:10.1137/19M130652X
[22] Gao, D.; Cosner, C.; Cantrell, RS; Beier, JC; Ruan, S., Modeling the spatial spread of Rift Valley fever in Egypt, Bull. Math. Biol., 75, 523-542 (2013) · Zbl 1273.92033 · doi:10.1007/s11538-013-9818-5
[23] Gao, D.; Dong, C-P, Fast diffusion inhibits disease outbreaks, Proc. Am. Math. Soc., 148, 4, 1709-1722 (2020) · Zbl 1441.92041 · doi:10.1090/proc/14868
[24] Gao, D.; Lou, Y.; Ruan, S., A periodic Ross-Macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19, 10, 3133-3145 (2014) · Zbl 1327.92059
[25] Gao, D.; Ruan, S., An SIS patch model with variable transmission coefficients, Math. Biosci., 232, 2, 110-115 (2011) · Zbl 1218.92064 · doi:10.1016/j.mbs.2011.05.001
[26] Gao, D.; van den Driessche, P.; Cosner, C., Habitat fragmentation promotes malaria persistence, J. Math. Biol., 79, 6, 2255-2280 (2019) · Zbl 1431.92133 · doi:10.1007/s00285-019-01428-2
[27] Gao D, Yuan X (2023) A hybrid Eulerian-Lagrangian model for vector-borne diseases, under review
[28] Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A., Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures, Proc. Natl. Acad. Sci. U. S. A., 117, 19, 10484-10491 (2020) · doi:10.1073/pnas.2004978117
[29] Gösgens, M.; Hendriks, T.; Boon, M.; Steenbakkers, W.; Heesterbeek, H.; van der Hofstad, R.; Litvak, N., Trade-offs between mobility restrictions and transmission of SARS-CoV-2, J. R. Soc. Interface, 18, 175, 20200936 (2021) · doi:10.1098/rsif.2020.0936
[30] Hasibeder, G.; Dye, C., Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theor. Popul. Biol., 33, 1, 31-53 (1988) · Zbl 0647.92015 · doi:10.1016/0040-5809(88)90003-2
[31] Horn, RA; Johnson, CR, Matrix analysis (2013), New York: Cambridge University Press, New York · Zbl 1267.15001
[32] Hsieh, Y-H; van den Driessche, P.; Wang, L., Impact of travel between patches for spatial spread of disease, Bull. Math. Biol., 69, 4, 1355-1375 (2007) · Zbl 1298.92100 · doi:10.1007/s11538-006-9169-6
[33] Iggidr, A.; Sallet, G.; Souza, MO, On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl., 441, 2, 723-743 (2016) · Zbl 1357.92071 · doi:10.1016/j.jmaa.2016.04.003
[34] Ikejezie, J.; Shapiro, CN; Kim, J.; Chiu, M.; Almiron, M.; Ugarte, C.; Espinal, MA; Aldighieri, S., Zika virus transmission-Region of the Americas, May 15, 2015-December 15, 2016, MMWR Morb. Mortal. Wkly. Rep., 66, 12, 329-334 (2017) · doi:10.15585/mmwr.mm6612a4
[35] Lajmanovich, A.; Yorke, JA, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 221-236 (1976) · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[36] Lasalle, JP, The stability of dynamical systems (1976), Philadelphia: SIAM, Philadelphia · Zbl 0364.93002 · doi:10.1137/1.9781611970432
[37] Li, C-K; Schneider, H., Applications of Perron-Frobenius theory to population dynamics, J. Math. Biol., 44, 450-462 (2002) · Zbl 1015.91059 · doi:10.1007/s002850100132
[38] Liu, M.; Fu, X.; Zhao, D., Dynamical analysis of an SIS epidemic model with migration and residence time, Int. J. Biomath., 14, 2150023 (2021) · Zbl 1480.92205 · doi:10.1142/S1793524521500236
[39] Lou, Y.; Wu, J., Modeling Lyme disease transmission, Infect. Dis. Model., 2, 2, 229-243 (2017)
[40] Macdonald, G., The epidemiology and control of Malaria (1957), London: Oxford University Press, London
[41] Manore, CA; Hickmann, KS; Xu, S.; Wearing, HJ; Hyman, JM, Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J. Theor. Biol., 356, 174-191 (2014) · Zbl 1412.92292 · doi:10.1016/j.jtbi.2014.04.033
[42] Mead, PS, Epidemiology of Lyme disease, Infect. Dis. Clin. North Am., 29, 2, 187-210 (2015) · doi:10.1016/j.idc.2015.02.010
[43] Misra, AK; Sharma, A.; Shukla, JB, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53, 1221-1228 (2011) · Zbl 1217.34097 · doi:10.1016/j.mcm.2010.12.005
[44] Moreno, V.; Espinoza, B.; Barley, K.; Paredes, M.; Bichara, D.; Mubayi, A.; Castillo-Chavez, C., The role of mobility and health disparities on the transmission dynamics of Tuberculosis, Theor. Biol. Med. Model., 14, 3 (2017) · doi:10.1186/s12976-017-0049-6
[45] Moreno, V.; Espinoza, B.; Bichara, D.; Holechek, SA; Castillo-Chavez, C., Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment, Infect. Dis. Model., 2, 1, 21-34 (2017)
[46] Pérez-Molina, JA; Molina, I., Chagas disease, Lancet, 391, 10115, 82-94 (2018) · doi:10.1016/S0140-6736(17)31612-4
[47] Reisen, WK; Wheeler, SS, Overwintering of West Nile Virus in the United States, J. Med. Entomol., 56, 6, 1498-1507 (2019) · doi:10.1093/jme/tjz070
[48] Rodríguez, DJ; Torres-Sorando, L., Models of infectious diseases in spatially heterogeneous environments, Bull. Math. Biol., 63, 3, 547-571 (2001) · Zbl 1323.92210 · doi:10.1006/bulm.2001.0231
[49] Ross, R., The Prevention of Malaria (1911), London: John Murray, London
[50] Ruan, S.; Wu, J.; Cantrell, S.; Cosner, C.; Ruan, S., Modeling spatial spread of communicable diseases involving animal hosts, Spatial ecology, 293-316 (2009), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 1183.92074
[51] Ruan, S.; Xiao, D.; Beier, JC, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70, 4, 1098-1114 (2006) · Zbl 1142.92040 · doi:10.1007/s11538-007-9292-z
[52] Ruktanonchai, NW; Smith, DL; De Leenheer, P., Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control, Math. Biosci., 279, 90-101 (2016) · Zbl 1348.92159 · doi:10.1016/j.mbs.2016.06.012
[53] Salmani, M.; van den Driessche, P., A model for disease transmission in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 6, 1, 185-202 (2006) · Zbl 1088.92050
[54] Schneider, H., Theorems on \(M\)-splittings of a singular \(M\)-matrix which depend on graph structure, Linear Algebra Appl., 58, 407-424 (1984) · Zbl 0561.65020 · doi:10.1016/0024-3795(84)90222-2
[55] Shuai, Z.; van den Driessche, P., Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73, 1513-1532 (2013) · Zbl 1308.34072 · doi:10.1137/120876642
[56] Smith, HL, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems (1995), Providence: American Mathematical Society, Providence · Zbl 0821.34003
[57] Tang, B.; Wang, X.; Li, Q.; Bragazzi, NL; Tang, S.; Xiao, Y.; Wu, J., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9, 2, 462 (2020) · doi:10.3390/jcm9020462
[58] Torres-Sorando, L.; Rodríguez, DJ, Models of spatio-temporal dynamics in malaria, Ecol. Model., 104, 231-240 (1997) · doi:10.1016/S0304-3800(97)00135-X
[59] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[60] Verdonschot, PFM; Besse-Lototskaya, AA, Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands, Limnologica, 45, 69-79 (2014) · doi:10.1016/j.limno.2013.11.002
[61] Wang, X.; Liu, S.; Wang, L.; Zhang, W., An epidemic patchy model with entry-exit screening, Bull. Math. Biol., 77, 7, 1237-1255 (2015) · Zbl 1355.92133 · doi:10.1007/s11538-015-0084-6
[62] Wang, W.; Mulone, G., Threshold of disease transmission in a patch environment, J. Math. Anal. Appl., 285, 1, 321-335 (2003) · Zbl 1021.92039 · doi:10.1016/S0022-247X(03)00428-1
[63] Wang, W.; Zhao, X-Q, An epidemic model in a patchy environment, Math. Biosci., 190, 1, 97-112 (2004) · Zbl 1048.92030 · doi:10.1016/j.mbs.2002.11.001
[64] World Health Organization (2020a) Dengue and Severe Dengue, https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
[65] World Health Organization (2020b) Vector-borne Disease, https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
[66] World Health Organization (2020c) World Malaria Report 2020, https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020
[67] Wu, JT; Leung, K.; Leung, GM, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study, Lancet, 395, 10225, 689-697 (2020) · doi:10.1016/S0140-6736(20)30260-9
[68] Zhang, J.; Cosner, C.; Zhu, H., Two-patch model for the spread of West Nile virus, Bull. Math. Biol., 80, 4, 840-863 (2018) · Zbl 1390.92153 · doi:10.1007/s11538-018-0404-8
[69] Zhao, X-Q, Dynamical systems in population biology (2017), New York: Springer-Verlag, New York · Zbl 1393.37003 · doi:10.1007/978-3-319-56433-3
[70] Zhao, X-Q; Jing, Z., Global asymptotic behavior in some cooperative systems of functional differential equations, Can. Appl. Math. Q., 4, 4, 421-444 (1996) · Zbl 0888.34038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.