×

A hybrid Lagrangian-Eulerian model for vector-borne diseases. (English) Zbl 07873587

Summary: In this paper, a multi-patch and multi-group vector-borne disease model is proposed to study the effects of host commuting (Lagrangian approach) and/or vector migration (Eulerian approach) on disease spread. We first define the basic reproduction number of the model, \(\mathcal{R}_{0}\), which completely determines the global dynamics of the model system. Namely, if \(\mathcal{R}_{0} \le 1\), then the disease-free equilibrium is globally asymptotically stable, and if \(\mathcal{R}_{0} > 1 \), then there exists a unique endemic equilibrium which is globally asymptotically stable. Then, we show that the basic reproduction number has lower and upper bounds which are independent of the host residence times matrix and the vector migration matrix. In particular, nonhomogeneous mixing of hosts and vectors in a homogeneous environment generally increases disease persistence and the basic reproduction number of the model attains its minimum when the distributions of hosts and vectors are proportional. Moreover, \(\mathcal{R}_{0}\) can also be estimated by the basic reproduction numbers of disconnected patches if the environment is homogeneous. The optimal vector control strategy is obtained for a special scenario. In the two-patch and two-group case, we numerically analyze the dependence of the basic reproduction number and the total number of infected people on the host residence times matrix and illustrate the optimal vector control strategy in homogeneous and heterogeneous environments.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
34H05 Control problems involving ordinary differential equations

References:

[1] Arino J (2009) Diseases in metapopulations. In: Ma Z, Zhou Y, Wu J (eds) Modeling and dynamics of infectious diseases, Ser. Contemp. Appl. Math., pp. 64-122. World Scientific, Singapore · Zbl 1180.92081
[2] Arino, J.; Ducrot, A.; Zongo, P., A metapopulation model for malaria with transmission-blocking partial immunity in hosts, J. Math. Biol., 64, 3, 423-448, 2012 · Zbl 1236.92036 · doi:10.1007/s00285-011-0418-4
[3] Auger, P.; Kouokam, E.; Sallet, G.; Tchuente, M.; Tsanou, B., The Ross-Macdonald model in a patchy environment, Math. Biosci., 216, 2, 123-131, 2008 · Zbl 1153.92026 · doi:10.1016/j.mbs.2008.08.010
[4] Bichara, D.; Castillo-Chavez, C., Vector-borne diseases models with residence times-A Lagrangian perspective, Math. Biosci., 281, 128-138, 2016 · Zbl 1348.92144 · doi:10.1016/j.mbs.2016.09.006
[5] Bichara, D.; Holechek, SA; Velázquez-Castro, J.; Murillo, AL; Castillo-Chavez, C., On the dynamics of dengue virus type 2 with residence times and vertical transmission, Lett. Biomath., 3, 1, 140-160, 2016 · doi:10.30707/LiB3.1Bichara
[6] Bichara, D.; Kang, Y.; Castillo-Chavez, C.; Horan, R.; Perrings, C., SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol., 77, 11, 2004-2034, 2015 · Zbl 1339.92078 · doi:10.1007/s11538-015-0113-5
[7] Castillo-Chavez, C.; Thieme, HR; Arino, O.; Axelrod, DE; Kimmel, M.; Langlais, M., Asymptotically autonomous epidemic models, Mathematical population dynamics: analysis of heterogeneity, 33-50, 1995, Winnipeg: Wuerz, Winnipeg
[8] Chen, X.; Gao, D., Effects of travel frequency on the persistence of mosquito-borne diseases, Discrete Contin. Dyn. Syst. Ser. B, 25, 12, 4677-4701, 2020 · Zbl 1469.92105
[9] Cosner, C.; Beier, JC; Cantrell, RS; Impoinvil, D.; Kapitanski, L.; Potts, MD; Troyo, A.; Ruan, S., The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258, 4, 550-560, 2009 · Zbl 1402.92386 · doi:10.1016/j.jtbi.2009.02.016
[10] Craig, MH; Snow, RW; Le Sueur, D., Climate-based distribution model of malaria transmission in sub-Saharan Africa, Parasitol. Today, 15, 3, 105-111, 1999 · doi:10.1016/S0169-4758(99)01396-4
[11] Diekmann, O.; Heesterbeek, JAP; Metz, JAJ, On the definition and the computation of the basic reproductionratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 4, 365-382, 1990 · Zbl 0726.92018 · doi:10.1007/BF00178324
[12] Dye, C.; Hasibeder, G., Population dynamics of mosquito-borne disease: Effects of flies which bite some people more frequently than others, Trans. R. Soc. Trop. Med. Hyg., 80, 1, 69-77, 1986 · doi:10.1016/0035-9203(86)90199-9
[13] Eaves, BC; Hoffman, AJ; Rothblum, UG; Schneider, H., Line-sum-symmetric scalings of square nonnegative matrices, Math. Program. Stud., 25, 124-141, 1985 · Zbl 0583.15004 · doi:10.1007/BFb0121080
[14] Feng, Z.; Velasco-Hernández, JX, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35, 5, 523-544, 1997 · Zbl 0878.92025 · doi:10.1007/s002850050064
[15] Fretwell, SD; Lucas, HL, On territorial behavior and other factors influencing habitat distribution in birds: I. Theoretical development, Acta Biotheor., 19, 1, 16-46, 1969 · doi:10.1007/BF01601953
[16] Gaff, HD; Gross, LJ, Modeling tick-borne disease: a metapopulation model, Bull. Math. Biol., 69, 1, 265-288, 2007 · Zbl 1133.92351 · doi:10.1007/s11538-006-9125-5
[17] Gao, D.; Cao, L., Vector-borne disease models with Lagrangian approach, J. Math. Biol., 88, 22, 2024 · Zbl 1534.92073 · doi:10.1007/s00285-023-02044-x
[18] Gao, D.; Cosner, C.; Cantrell, RS; Beier, JC; Ruan, S., Modeling the spatial spread of Rift Valley fever in Egypt, Bull. Math. Biol., 75, 523-542, 2013 · Zbl 1273.92033 · doi:10.1007/s11538-013-9818-5
[19] Gao, D.; Lou, Y., Impact of state-dependent dispersal on disease prevalence, J. Nonlinear Sci., 31, 73, 2021 · Zbl 1478.34057 · doi:10.1007/s00332-021-09731-3
[20] Gao, D.; Lou, Y.; He, D.; Porco, TC; Kuang, Y.; Chowell, G.; Ruan, S., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6, 28070, 2016 · doi:10.1038/srep28070
[21] Gao, D.; Lou, Y.; Ruan, S., A periodic Ross-Macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19, 10, 3133-3145, 2014 · Zbl 1327.92059
[22] Gao, D.; Ruan, S., An SIS patch model with variable transmission coefficients, Math. Biosci., 232, 2, 110-115, 2011 · Zbl 1218.92064 · doi:10.1016/j.mbs.2011.05.001
[23] Gao, D.; Ruan, S., A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72, 3, 819-841, 2012 · Zbl 1250.92029 · doi:10.1137/110850761
[24] Gao, D.; Ruan, S.; Chen, D.; Moulin, B.; Wu, J., Malaria models with spatial effects, Analyzing and modeling spatial and temporal dynamics of infectious diseases, 109-136, 2014, Hoboken: John Wiley & Sons, Hoboken · doi:10.1002/9781118630013.ch6
[25] Gao, D.; van den Driessche, P.; Cosner, C., Habitat fragmentation promotes malaria persistence, J. Math. Biol., 79, 6-7, 2255-2280, 2019 · Zbl 1431.92133 · doi:10.1007/s00285-019-01428-2
[26] Harvim, P.; Zhang, H.; Georgescu, P.; Zhang, L., Transmission dynamics and control mechanisms of vector-borne diseases with active and passive movements between urban and satellite cities, Bull. Math. Biol., 81, 11, 4518-4563, 2019 · Zbl 1430.92101 · doi:10.1007/s11538-019-00671-4
[27] Hasibeder, G.; Dye, C., Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theor. Popul. Biol., 33, 1, 31-53, 1988 · Zbl 0647.92015 · doi:10.1016/0040-5809(88)90003-2
[28] Horn, RA; Johnson, CR, Matrix analysis, 2013, New York: Cambridge University Press, New York · Zbl 1267.15001
[29] Iggidr, A.; Koiller, J.; Penna, MLF; Sallet, G.; Silva, MA; Souza, MO, Vector borne diseases on an urban environment: the effects of heterogeneity and human circulation, Ecol. Complex., 30, 76-90, 2017 · doi:10.1016/j.ecocom.2016.12.006
[30] Iggidr, A.; Sallet, G.; Souza, MO, On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl., 441, 2, 723-743, 2016 · Zbl 1357.92071 · doi:10.1016/j.jmaa.2016.04.003
[31] Lajmanovich, A.; Yorke, JA, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 3-4, 221-236, 1976 · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[32] Lee, S.; Castillo-Chavez, C., The role of residence times in two-patch dengue transmission dynamics and optimal strategies, J. Theor. Biol., 374, 152-164, 2015 · Zbl 1341.92074 · doi:10.1016/j.jtbi.2015.03.005
[33] Liu, R.; Shuai, J.; Wu, J.; Zhu, H., Modeling spatial spread of West Nile virus and impact of directional dispersal of birds, Math. Biosci. Eng., 3, 1, 145-160, 2006 · Zbl 1089.92047 · doi:10.3934/mbe.2006.3.145
[34] Lou, Y.; Wu, J., Modeling Lyme disease transmission, Infect. Dis. Model., 2, 2, 229-243, 2017
[35] Macdonald, G., The epidemiology and control of malaria, 1957, London: Oxford University Press, London
[36] Mishra, A.; Gakkhar, S., Non-linear dynamics of two-patch model incorporating secondary dengue infection, Int. J. Appl. Comput. Math., 4, 19, 2018 · Zbl 1383.92083 · doi:10.1007/s40819-017-0460-z
[37] Moreno, VM; Espinoza, B.; Bichara, D.; Holechek, SA; Castillo-Chavez, C., Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment, Infect. Dis. Model., 2, 1, 21-34, 2017
[38] Muir, LE; Kay, BH, Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia, Am. J. Trop. Med. Hyg., 58, 3, 277-282, 1998 · doi:10.4269/ajtmh.1998.58.277
[39] Mukhtar, AYA; Munyakazi, JB; Ouifki, R., Assessing the role of human mobility on malaria transmission, Math. Biosci., 320, 108304, 2020 · Zbl 1437.92132 · doi:10.1016/j.mbs.2019.108304
[40] National Bureau of Statistics of China (2021) The Main Data of the Seventh National Census. http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901080.html
[41] Post, WM; DeAngelis, DL; Travis, CC, Endemic disease in environments with spatially heterogeneous host populations, Math. Biosci., 63, 2, 289-302, 1983 · Zbl 0528.92018 · doi:10.1016/0025-5564(82)90044-X
[42] Qiu, Z.; Kong, Q.; Li, X.; Martcheva, M., The vector-host epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405, 1, 12-36, 2013 · Zbl 1306.92063 · doi:10.1016/j.jmaa.2013.03.042
[43] Reiner, RC Jr; Perkins, TA; Barker, CM; Niu, T.; Chaves, LF; Ellis, AM; George, DB; Le Menach, A.; Pulliam, JRC; Bisanzio, D., A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010, J. R. Soc. Interface, 10, 81, 20120921, 2013 · doi:10.1098/rsif.2012.0921
[44] Ross, R., The prevention of malaria, 1911, London: John Murray, London
[45] Ruan, S.; Xiao, D.; Beier, JC, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70, 1098-1114, 2008 · Zbl 1142.92040 · doi:10.1007/s11538-007-9292-z
[46] Ruktanonchai, NW; Smith, DL; De Leenheer, P., Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: implications for control, Math. Biosci., 279, 90-101, 2016 · Zbl 1348.92159 · doi:10.1016/j.mbs.2016.06.012
[47] Rushton, S.; Mautner, AJ, The deterministic model of a simple epidemic for more than one community, Biometrika, 42, 126-132, 1955 · Zbl 0064.39102 · doi:10.1093/biomet/42.1-2.126
[48] Russell, RC; Webb, CE; Williams, CR; Ritchie, SA, Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia, Med. Vet. Entomol., 19, 4, 451-457, 2005 · doi:10.1111/j.1365-2915.2005.00589.x
[49] Sattenspiel, L.; Dietz, K., A structured epidemic model incorporating geographic mobility among regions, Math. Biosci., 128, 1-2, 71-91, 1995 · Zbl 0833.92020 · doi:10.1016/0025-5564(94)00068-B
[50] Saucedo, O.; Tien, JH, Host movement, transmission hot spots, and vector-borne disease dynamics on spatial networks, Infect. Dis. Model., 7, 4, 742-760, 2022
[51] Smith, HL, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995, Providence: American Mathematical Society, Providence · Zbl 0821.34003
[52] Soriano-Paños, D.; Arias-Castro, JH; Reyna-Lara, A.; Martínez, HJ; Meloni, S.; Gómez-Gardeñes, J., Vector-borne epidemics driven by human mobility, Phys. Rev. Res., 2, 1, 013312, 2020 · doi:10.1103/PhysRevResearch.2.013312
[53] Torres-Sorando, L.; Rodríguez, DJ, Models of spatio-temporal dynamics in malaria, Ecol. Model., 104, 2-3, 231-240, 1997 · doi:10.1016/S0304-3800(97)00135-X
[54] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1-2, 29-48, 2002 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[55] Verdonschot, PFM; Besse-Lototskaya, AA, Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands, Limnologica, 45, 69-79, 2014 · doi:10.1016/j.limno.2013.11.002
[56] Wang, BG; Qiang, L.; Wang, Z-C, An almost periodic Ross-Macdonald model with structured vector population in a patchy environment, J. Math. Biol., 80, 835-863, 2020 · Zbl 1440.34051 · doi:10.1007/s00285-019-01443-3
[57] World Health Organization (2019) Japanese Encephalitis. https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis
[58] World Health Organization (2019) WHO Region of the Americas records highest number of dengue cases in history; cases spike in other regions. https://www.who.int/news/item/21-11-2019-who-region-of-the-americas-records-highest-number-of-dengue-cases-in-history-cases-spike-in-other-regions
[59] World Health Organization (2020) Chikungunya. https://www.who.int/news-room/fact-sheets/detail/chikungunya
[60] World Health Organization (2020) Vector-borne Diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
[61] World Health Organization (2021) Zika Virus Disease. https://www.who.int/health-topics/zika-virus-disease
[62] World Health Organization (2022) World Malaria Report 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
[63] World Health Organization (2023) Chagas Disease (also known as American trypanosomiasis). https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
[64] World Health Organization (2023) Dengue and Severe Dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
[65] Wu, R.; Zhao, X-Q, The evolution dynamics of an impulsive hybrid population model with spatial heterogeneity, Commun. Nonlinear Sci. Numer. Simul., 107, 106181, 2022 · Zbl 1482.35266 · doi:10.1016/j.cnsns.2021.106181
[66] Wu, X.; Gao, D.; Song, Z.; Wu, J., Modelling triatomine bug population and Trypanosoma rangeli transmission dynamics: co-feeding, pathogenic effect and linkage with Chagas disease, Math. Biosci., 324, 108326, 2020 · Zbl 1448.92355 · doi:10.1016/j.mbs.2020.108326
[67] Xiao, Y.; Zou, X., Transmission dynamics for vector-borne diseases in a patchy environment, J. Math. Biol., 69, 113-146, 2014 · Zbl 1300.34189 · doi:10.1007/s00285-013-0695-1
[68] Xue, L.; Scott, HM; Cohnstaedt, LW; Scoglio, C., A network-based meta-population approach to model Rift Valley fever epidemics, J. Theor. Biol., 306, 129-144, 2012 · Zbl 1397.92695 · doi:10.1016/j.jtbi.2012.04.029
[69] Zhang, J.; Cosner, C.; Zhu, H., Two-patch model for the spread of West Nile virus, Bull. Math. Biol., 80, 840-863, 2018 · Zbl 1390.92153 · doi:10.1007/s11538-018-0404-8
[70] Zhang, X.; Sun, B.; Lou, Y., Dynamics of a periodic tick-borne disease model with co-feeding and multiple patches, J. Math. Biol., 82, 27, 2021 · Zbl 1461.92127 · doi:10.1007/s00285-021-01582-6
[71] Zhao, X-Q, Dynamical systems in population biology, 2017, New York: Springer-Verlag, New York · Zbl 1393.37003 · doi:10.1007/978-3-319-56433-3
[72] Zhao, X-Q; Jing, Z., Global asymptotic behavior in some cooperative systems of functional differential equations, Can. Appl. Math. Q., 4, 4, 421-444, 1996 · Zbl 0888.34038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.