×

SIS and SIR epidemic models under virtual dispersal. (English) Zbl 1339.92078

Summary: We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general \(n\)-patch SIS model whose basic reproduction number \(\mathcal {R}_0 \) is computed as a function of a patch residence-time matrix \(\mathbb {P}\). Our analysis implies that the resulting \(n\)-patch SIS model has robust dynamics when patches are strongly connected: There is a unique globally stable endemic equilibrium when \(\mathcal {R}_0>1 \), while the disease-free equilibrium is globally stable when \(\mathcal {R}_0\leq 1 \). Our further analysis indicates that the dispersal behavior described by the residence-time matrix \(\mathbb {P}\) has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence-time matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single-outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease-prevalence-driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state-dependent \(\mathbb {P}\) on disease dynamics.

MSC:

92D30 Epidemiology

References:

[1] Anderson RM, May RM (1982) Directly transmitted infections diseases: control by vaccination. Science 215:1053-1060 · Zbl 1225.37099 · doi:10.1126/science.7063839
[2] Anderson RM, May RM (1991) Infectious diseases of humans. Dynamics and control. Oxford Science Publications, New York
[3] Arino J (2009) Diseases in metapopulations. In: Ma Z, Zhou Y, Wu J (eds) Modeling and dynamics of infectious diseases, vol 11. World Scientific, Singapore · Zbl 0833.92020
[4] Arino J, Davis J, Hartley D, Jordan R, Miller J, van den Driessche P (2005) A multi-species epidemic model with spatial dynamics. Math Med Biol 22:129-142 · Zbl 1076.92045 · doi:10.1093/imammb/dqi003
[5] Arino J, van den Driessche P (2003) The basic reproduction number in a multi-city compartmental model. Lecture notes in control and information science, vol 294, pp 135-142 · Zbl 1057.92045
[6] Arino, J.; Driessche, P.; Zhao, X-O (ed.); Zou, X. (ed.), Disease spread in metapopulations, No. 48, 1-13 (2006), Providence · Zbl 1107.34042
[7] Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences, vol 9 of classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Revised reprint of the 1979 original · Zbl 0484.15016
[8] Bernoulli D (1766) Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, Mem. Math. Phys. Acad. R. Sci. Paris, pp. 1-45 · Zbl 1308.34072
[9] Blythe SP, Castillo-Chavez C (1989) Like-with-like preference and sexual mixing models. Math Biosci 96:221-238 · Zbl 0679.92017 · doi:10.1016/0025-5564(89)90060-6
[10] Brauer F (2008) Epidemic models with heterogeneous mixing and treatment. Bull Math Biol 70:1869-1885 · Zbl 1147.92033 · doi:10.1007/s11538-008-9326-1
[11] Brauer, F.; Castillo-Chavez, C.; Steele, J. (ed.); Powell, T. (ed.), Basic models in epidemiology, 410-477 (1994), New York
[12] Brauer F, Castillo-Chávez C (2012) Mathematical models in population biology and epidemiology. In: Marsden JE, Sirovich L, Golubitski M (eds) Applied mathematics, vol 40. Springer, New York · Zbl 1302.92001
[13] Brauer F, Castillo-Chavez C, Velasco-Herná ndez JX (1996) Recruitment effects in heterosexually transmitted disease models. In: Kirschner D (ed) Advances in mathematical modeling of biological processes, vol 3:1. Int J Appl Sci Comput, pp 78-90
[14] Brauer F, Feng Z, Castillo-Chavez C (2010) Discrete epidemic models. Math Biosci Eng 7:1-15 · Zbl 1184.92040 · doi:10.3934/mbe.2010.7.1
[15] Brauer F, van den Driessche P (2001) Models for transmission of disease with immigration of infectives. Math Biosci 171:143-154 · Zbl 0995.92041
[16] Brauer F, van den Driessche P, Wang L (2008) Oscillations in a patchy environment disease model. Math Biosci 215:1-10 · Zbl 1176.34098 · doi:10.1016/j.mbs.2008.05.001
[17] Brauer F, Watmough J (2009) Age of infection epidemic models with heterogeneous mixing. J Biol Dyn 3:324-330 · Zbl 1342.92228 · doi:10.1080/17513750802415822
[18] Castillo-Chavez C, Busenberg S (1991) A general solution of the problem of mixing of subpopulations and its application to risk-and age-structured epidemic models for the spread of AIDS. Math Med Biol 8:1-29 · Zbl 0764.92017 · doi:10.1093/imammb/8.1.1
[19] Castillo-Chavez C, Cooke K, Huang W, Levin SA (1989) Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. Appl Math Lett 2:327-331 · Zbl 0703.92022 · doi:10.1016/0893-9659(89)90080-3
[20] Castillo-Chavez C, Hethcote H, Andreasen V, Levin S, Liu W (1989) Epidemiological models with age structure, proportionate mixing, and cross-immunity. J Math Biol 27:233-258 · Zbl 0715.92028 · doi:10.1007/BF00275810
[21] Castillo-Chavez C, Huang W (1999) Age-structured core group modeland its impact on STD dynamics. In Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory (Minneapolis, MN, 1999), vol. 126 of IMA, Math Appl, Springer, New York, 2002, pp. 261-273 · Zbl 1022.92028
[22] Castillo-Chavez C, Huang W, Li J (1996) Competitive exclusion in gonorrhea models and other sexually transmitted diseases. SIAM J Appl Math 56:494-508 · Zbl 0845.92021 · doi:10.1137/S003613999325419X
[23] Castillo-Chavez C, Huang W, Li J (1999) Competitive exclusion and coexistence of multiple strains in an SIS STD model. SIAM J Appl Math 59:1790-1811 (electronic) · Zbl 0934.92029 · doi:10.1137/S0036139997325862
[24] Castillo-Chavez, C.; Thieme, HR; Arino, ADE (ed.); Kimmel, O. (ed.); Kimmel, M. (ed.), Asymptotically autonomous epidemic models (1995), Winnipeg
[25] Castillo-Chavez, C.; Velasco-Hernández, JX; Fridman, S.; Levin, SA (ed.), Modeling contact structures in biology, No. 100 (1994), Berlin · Zbl 0830.92022 · doi:10.1007/978-3-642-50124-1_27
[26] Chowell D, Castillo-Chavez C, Krishna S, Qiu X, Anderson KS (2015) Modelling the effect of early detection of Ebola. Lancet 15:148-149 · doi:10.1016/S1473-3099(14)71084-9
[27] Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \[R_0\] R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28:365-382 · Zbl 0726.92018 · doi:10.1007/BF00178324
[28] Dietz K, Heesterbeek J (2002) Daniel Bernoulli’s epidemiological model revisited. Math Biosci 180:1-21 · Zbl 1019.92028 · doi:10.1016/S0025-5564(02)00122-0
[29] Dietz K, Schenzle D (1985) Mathematical models for infectious disease statistics. In: Atkinson, Anthony, Fienberg, Stephen E (eds) A celebration of statistics. Springer, New York, pp 167-204 · Zbl 0586.92017
[30] Fall A, Iggidr A, Sallet G, Tewa J-J (2007) Epidemiological models and Lyapunov functions. Math Model Nat Phenom 2:62-68 · Zbl 1337.92206 · doi:10.1051/mmnp:2008011
[31] Fenichel E, Castillo-Chavez C, Ceddia MG, Chowell G,Gonzalez Parra P, Hickling GJ, Holloway G, Horan R, Morin B, Perrings C, Springborn M, Valazquez L, Villalobos C (2011) Adaptive human behavior in epidemiological models. PNAS 208(15):6306-6311 · Zbl 1148.34039
[32] Guo H, Li M, Shuai Z (2006) Global stability of the endemic equilibrium of multigroup models. Can Appl Math Q 14:259-284 · Zbl 1148.34039
[33] Guo H, Li M, Shuai Z (2008) A graph-theoretic approach to the method of global Lyapunov functions. Proc Am Math Soc 136(8):2793-2802 · Zbl 1155.34028
[34] Hadeler K, Castillo-Chavez C (1995) A core group model for disease transmission. Math Biosci 128:41-55 · Zbl 0832.92021 · doi:10.1016/0025-5564(94)00066-9
[35] Heiderich, KR; Huang, W.; Castillo-Chavez, C.; Appli, IVM (ed.), Nonlocal response in a simple epidemiological model, No. 125, 129-151 (2002), New York · Zbl 1026.92040 · doi:10.1007/978-1-4757-3667-0_8
[36] Hernandez-Ceron N, Feng Z, Castillo-Chavez C (2013) Discrete epidemic models with arbitrary stage distributions and applications to disease control. Bull Math Biol 75:1716-1746 · Zbl 1310.92052 · doi:10.1007/s11538-013-9866-x
[37] Hethcote HW (1976) Qualitative analyses of communicable disease models. Math Biosci 28:335-356 · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[38] Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42:599-653 (electronic) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[39] Hethcote HW, Thieme HR (1985) Stability of the endemic equilibrium in epidemic models with subpopulations. Math Biosci 75:205-227 · Zbl 0582.92024 · doi:10.1016/0025-5564(85)90038-0
[40] Hethcote HW, Yorke J (1984) Gonorrhea: transmission dynamics and control, vol 56. Lecture notes in biomathematics. Springer · Zbl 0857.92015
[41] Hirsch M (1984) The dynamical system approach to differential equations. Bull AMS 11:1-64 · Zbl 0541.34026 · doi:10.1090/S0273-0979-1984-15236-4
[42] Horan DR, Fenichel EP (2007) Economics and ecology of managing emerging infectious animal diseases. Am J Agric Econ 89:1232-1238 · doi:10.1111/j.1467-8276.2007.01089.x
[43] Horan DR, Fenichel EP, Melstrom RT (2011) Wildlife disease bioeconomics. Int Rev Environ Resour Econ 5:23-61 · doi:10.1561/101.00000038
[44] Horan DR, Fenichel EP, Wolf CA, Graming BM (2010) Managing infectious animal disease systems. Annu Rev Resour Econ 2:101-124 · doi:10.1146/annurev.resource.012809.103859
[45] Hsu Schmitz S-F (2000a) Effect of treatment or/and vaccination on HIV transmission in homosexual with genetic heterogeneity. Math Biosci 167:1-18 · Zbl 0979.92023 · doi:10.1016/S0025-5564(00)00021-3
[46] Hsu Schmitz S-F (2000b) A mathematical model of HIV transmission in homosexuals with genetic heterogeneity. J Theor Med 2:285-296 · Zbl 0962.92035
[47] Hsu Schmitz S-F (2007) The influence of treatment and vaccination induced changes in the risky contact rate on HIV transmisssion. Math Popul Stud 14:57-76 · Zbl 1109.92026 · doi:10.1080/08898480601090683
[48] Huang W, Cooke K, Castillo-Chavez C (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J Appl Math 52:835-854 · Zbl 0769.92023 · doi:10.1137/0152047
[49] Huang W, Cooke KL, Castillo-Chavez C (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J Appl Math 52:835-854 · Zbl 0769.92023 · doi:10.1137/0152047
[50] Hutson V (1984) A theorem on average Lyapunov functions. Monatshefte für Mathematik 98:267-275 · Zbl 0542.34043 · doi:10.1007/BF01540776
[51] Iggidr A, Sallet G, Tsanou B (2012) Global stability analysis of a metapopulation SIS epidemic model. Math Popul Stud 19:115-129 · Zbl 1382.92238 · doi:10.1080/08898480.2012.693844
[52] Jacquez JA, Simon CP (1993) The stochastic SI model with recruitment and deaths I. Comparison with the closed SIS model. Math Biosci 117:77-125 · Zbl 0785.92025 · doi:10.1016/0025-5564(93)90018-6
[53] Jacquez JA, Simon CP, Koopman J (1991) The reproduction number in deterministic models of contagious diseases. Comment Theor Biol 2:159-209
[54] Jacquez JA, Simon CP, Koopman J, Sattenspiel L, Perry T (1988) Modeling and analyzing HIV transmission: the effect of contact patterns. Math Biosci 92:119-199 · Zbl 0686.92016
[55] Kuniya T, Muroya Y (2014) Global stability of a multi-group SIS epidemic model for population migration. DCDS Ser B 19(4):1105-1118 · Zbl 1308.34065
[56] Lajmanovich A, Yorke J (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci 28:221-236 · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[57] Lin X, So JW-H (1993) Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations. J Aust Math Soc Ser B 34:282-295 · Zbl 0778.92020 · doi:10.1017/S0334270000008900
[58] Morin B, Castillo-Chavez C (2003) SIR dynamics with economically driven contact rates. Nat Resour Model 26:505-525 · Zbl 1542.92171 · doi:10.1111/nrm.12011
[59] Mossong J, Hens N, Jit M, Beutels P, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5:381-391 · doi:10.1371/journal.pmed.0050074
[60] Nold A (1980) Heterogeneity in disease-transmission modeling. Math Biosci 52:227 · Zbl 0454.92020 · doi:10.1016/0025-5564(80)90069-3
[61] Perrings C, Castillo-Chavez C, Chowell G, Daszak P, Fenichel EP, Finnoff D, Horan RD, Kilpatrick AM, Kinzig AP, Kuminoff NV, Levin S, Morin B, Smith KF, Springborn M (2014) Merging economics and epidemiology to improve the prediction and management of infectious disease. Ecohealth 11(4):464-475 · Zbl 1308.34072
[62] Ross R (1911) The prevention of malaria. John Murray, London
[63] Rushton S, Mautner A (1955) The deterministic model of a simple epidemic for more than one community. Biometrika 42(1/2):126-132 · Zbl 0064.39102
[64] Sattenspiel L, Dietz K (1995) A structured epidemic model incorporating geographic mobility among regions. Math Biosci 128:71-91 · Zbl 0833.92020 · doi:10.1016/0025-5564(94)00068-B
[65] Sattenspiel L, Simon CP (1988) The spread and persistence of infectious diseases in structured populations. Math Biosci 90:341-366 [Nonlinearity in biology and medicine (Los Alamos, NM, 1987)] · Zbl 0659.92013 · doi:10.1016/0025-5564(88)90074-0
[66] Shuai Z, van den Driessche P (2013) Global stability of infectious disease models using lyapunov functions. SIAM J Appl Math 73:1513-1532 · Zbl 1308.34072 · doi:10.1137/120876642
[67] Simon CP, Jacquez JA (1992) Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations. SIAM J Appl Math 52:541-576 · Zbl 0765.92019 · doi:10.1137/0152030
[68] van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29-48 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[69] Velasco-Hernández JX, Brauer F, Castillo-Chavez C (1996) Effects of treatment and prevalence-dependent recruitment on the dynamics of a fatal disease. IMA J Math Appl Med Biol 13:175-192 · Zbl 0857.92015 · doi:10.1093/imammb/13.3.175
[70] Vidyasagar M (1980) Decomposition techniques for large-scale systems with nonadditive interactions: stability and stabilizability. IEEE Trans Autom Control 25:773-779 · Zbl 0478.93044 · doi:10.1109/TAC.1980.1102422
[71] Yorke JA, Hethcote HW, Nold A (1978) Dynamics and control of the transmission of gonorrhea. Sex Transm Dis 5:51-56 · doi:10.1097/00007435-197804000-00003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.