×

Vector-borne diseases models with residence times – a Lagrangian perspective. (English) Zbl 1348.92144

Summary: A multi-patch and multi-group modeling framework describing the dynamics of a class of diseases driven by the interactions between vectors and hosts structured by groups is formulated. Hosts’ dispersal is modeled in terms of patch-residence times with the nonlinear dynamics taking into account the effective patch-host size. The residence times basic reproduction number \(\mathcal{R}_0\) is computed and shown to depend on the relative environmental risk of infection. The model is robust, that is, the disease free equilibrium is globally asymptotically stable (GAS) if \(\mathcal{R}_0 \leq 1\) and a unique interior endemic equilibrium is shown to exist that is GAS whenever \(\mathcal{R}_0 > 1\) whenever the configuration of host-vector interactions is irreducible. The effects of patchiness and groupness, a measure of host-vector heterogeneous structure, on the basic reproduction number \(\mathcal{R}_0,\) are explored. Numerical simulations are carried out to highlight the effects of residence times on disease prevalence.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34C12 Monotone systems involving ordinary differential equations

References:

[1] Adams, B.; Kapan, D. D., Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics, PloS One, 4 (2009)
[2] Arino, J.; Bowman, C.; Gumel, A.; Portet, S., Effect of pathogen-resistant vectors on the transmission dynamics of a vector-borne disease., J Biol. Dyn., 1, 320-346 (2007) · Zbl 1284.92098
[3] Arino, J.; Ducrot, A.; Zongo, P., A metapopulation model for malaria with transmission-blocking partial immunity in hosts, J. Math. Biol., 64, 423-448 (2012) · Zbl 1236.92036
[4] Aron, J. L.; May, R. M., The population dynamics of malaria, The Population Dynamics of Infectious diseases: Theory and Applications, 139-179 (1982), Springer
[5] Auger, P.; Kouokam, E.; Sallet, G.; Tchuente, M.; Tsanou, B., The ross-macdonald model in a patchy environment, Math. Biosci., 216, 123-131 (2008) · Zbl 1153.92026
[6] Bailey, N. T., The biomathematics of malaria. the biomathematics of diseases: 1., The biomathematics of malaria. The Biomathematics of Diseases: 1. (1982) · Zbl 0494.92018
[7] Bichara, D.; Kang, Y.; Castillo-Chavez, C.; Horan, R.; Perrings, C., SIS and SIR models under virtual dispersal, Bull. Math. Biol., 77, 2004-2034 (2015) · Zbl 1339.92078
[8] Biritwum, R.; Welbeck, J.; Barnish, G., Incidence and management of malaria in two communities of different socio-economic level, in accra, ghana, Ann. Trop. Med. Parasitol., 94, 771-778 (2000)
[9] Bonnet, D. D.; Worcester, D. J., The dispersal of aedes albopictus in the territory of hawaii, Am. J. Trop. Med. Hyg., 1, 465-476 (1946)
[10] Castillo-Chavez, C.; Curtiss, R.; Daszak, P.; Levin, S. A.; Patterson-Lomba, O.; Perrings, C.; Poste, G.; Towers, S., Beyond ebola: lessons to mitigate future pandemics, Lancet Glob. Health, 3, e354-e355 (2015)
[11] Castillo-Chavez, C.; Song, B.; Zhangi, J., An epidemic model with virtual mass transportation: the case of smallpox, Bioterrorism: Math. Model. Appl. Homel. Secur., 28, 173 (2003)
[12] Castillo-Chavez, C.; Thieme, H. R., Asymptotically autonomous epidemic models, (Arino, O.; D. E., A.; Kimmel, M., Mathematical Population Dynamics: Analysis of Heterogeneity. Mathematical Population Dynamics: Analysis of Heterogeneity, Theory of Epidemics, vol. One (1995), Wuerz)
[13] Castillo-Chavez, C.; Velasco-Hernandez, J. X.; Fridman, S., Modeling contact structures in biology, (Levin, S. A., Frontiers in Mathematical Biology, vol. 100 (1994), Springer), 454-491 · Zbl 0830.92022
[14] Chitnis, N., Using Mathematical Models in Controlling The Spread of Malaria (2005), University of Arizona, Ph.d thesis
[15] Chitnis, N.; Cushing, J. M.; Hyman, J. M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67, 24-45 (2006) · Zbl 1107.92047
[16] Chitnis, N.; Hyman, J. M.; Cushing, J., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. (2008) · Zbl 1142.92025
[17] Chitnis, N.; Hyman, J. M.; Manore, C. A., Modelling vertical transmission in vector-borne diseases with applications to rift valley fever, J. Biol. Dyn., 7, 11-40 (2013) · Zbl 1447.92407
[18] Cosner, C.; Beier, J.; Cantrell, R.; Impoinvil, D.; Kapitanski, L.; Potts, M.; Troyo, A.; Ruan, S., The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258, 550-560 (2009) · Zbl 1402.92386
[19] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365-382 (1990) · Zbl 0726.92018
[20] Dietz, K., transmission and control of arbovirus diseases, (Ludwig, D.; Cooke, K., SIMS 1974 Utah Conference Proceedings (1975)), 104-121 · Zbl 0322.92023
[21] Dietz, K., Epidemiologic interference of virus population, J. Math. Biol., 8, 291-300 (1979) · Zbl 0412.92024
[22] Dietz, K., Models for vector-borne parasitic diseases, Vito Volterra Symposium on Mathematical Models in Biology (Rome, 1979). Vito Volterra Symposium on Mathematical Models in Biology (Rome, 1979), Lecture Notes in Biomath., Springer, Berlin, vol. 39, 264-277 (1980) · Zbl 0441.92020
[23] Dumont, Y.; Chiroleu, F., Vector control for the chikungunya disease, Math. Biosci. Eng, 7, 313-345 (2010) · Zbl 1259.92071
[24] Dumont, Y.; Chiroleu, F.; Domerg, C., On a temporal model for the chikungunya disease: modeling, theory and numerics, Math. Biosci., 213, 80-91 (2008) · Zbl 1135.92028
[25] Dye, C.; Hasibeder, G., Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others, Trans. R. Soc. Tropical Med. Hyg., 80, 69-77 (1986)
[26] Elbers, A.; Koenraadt, C.; Meiswinkel, R., Mosquitoes and culicoides biting midges: vector range and the influence of climate change, Rev. Sci. Tech. Off. Int. Epiz, 34, 123-137 (2015)
[27] Forouzannia, F.; Gumel, A. B., Mathematical analysis of an age-structured model for malaria transmission dynamics, Math. Biosci., 247, 80-94 (2014) · Zbl 1282.92018
[28] Gao, D.; Ruan, S., A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72, 819-841 (2012) · Zbl 1250.92029
[29] Garba, S. M.; Gumel, A. B.; Bakar, M. A., Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215, 11-25 (2008) · Zbl 1156.92036
[30] Grünbaum, D., Translating stochastic density-dependent individual behavior with sensory constraints to an Eulerian model of animal swarming, J. Math. Biol., 33, 139-161 (1994) · Zbl 0822.92023
[31] Hasibeder, G.; Dye, C., Population dynamics of mosquito-borne disease: Persistence in a completely heterogeneous environment, Theor. Popul. Biol., 33, 31-53 (1988) · Zbl 0647.92015
[32] Hirsch, M., The dynamical system approach to differential equations, Bull. AMS, 11, 1-64 (1984) · Zbl 0541.34026
[33] Honório, N. A.; Silva, W.d. C.; Leite, P. J.; Gonçalves, J. M.; Lounibos, L. P.; Oliveira, R. L.-d., Dispersal of aedes aegypti and aedes albopictus (diptera: Culicidae) in an urban endemic dengue area in the state of rio de janeiro, brazil, Memórias do Instituto Oswaldo Cruz, 98, 191-198 (2003)
[34] Iggidr, A.; Sallet, G.; Souza, M. O., On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl., 441, 723-743 (2016) · Zbl 1357.92071
[35] Iggidr, A.; Sallet, G.; Tsanou, B., Global stability analysis of a metapopulation sis epidemic model, Math. Popul. Stud., 19, 115-129 (2012) · Zbl 1382.92238
[36] Kaufmann, C.; Briegel, H., Flight performance of the malaria vectors anopheles gambiae and anopheles atroparvus, J. Vector Ecol., 29, 140-153 (2004)
[37] Koram, K.; Bennett, S.; Adiamah, J.; Greenwood, B., Socio-economic risk factors for malaria in a peri-urban area of the gambia, Trans. R. Soc. Tropical Med. Hyg., 89, 146-150 (1995)
[38] Kuno, G., Review of the factors modulating dengue transmission, Epidemiol. Rev., 17, 321-335 (1995)
[39] Lee, S.; Castillo-Chavez, C., The role of residence times in two-patch dengue transmission dynamics and optimal strategies, J. Theor. Biol., 374, 152-164 (2015) · Zbl 1341.92074
[40] Macdonald, G., Epidemiological basis of malaria control, Bull. World Health Organ., 15, 613 (1956)
[41] Macdonald, G., The Epidemiology and Control of Malaria (1957), Oxford University Press: Oxford University Press London
[42] Martens, P.; Hall, L., Malaria on the move: human population movement and malaria transmission., Emerg. Infectious Dis., 6, 103 (2000)
[43] Ngwa, A. G., On the population dynamics of the malaria vector, Bull. Math. Biol. (2006) · Zbl 1296.92214
[44] Ngwa, A. G.; Shu, W., A mathematical model for endemic malaria with variable human and mosquito population, Math. Comput. Model., 32, 747-763 (2000) · Zbl 0998.92035
[45] Niebylski, M.; Craig, G., Dispersal and survival of aedes albopictus at a scrap tire yard in missouri., J. Am. Mosquito Control Assoc., 10, 339-343 (1994)
[46] Novak, R., A north american model to contain the spread of aedes albopictus through tire legislation., Parassitologia, 37, 129-139 (1995)
[47] Okubo, A., Diffusion and ecological problems: mathematical models, Biomathematics, 10 (1980) · Zbl 0422.92025
[48] Okubo, A.; Levin, S. A., Diffusion and Ecological Problems: Modern Perspectives, vol. 14 (2013), Springer Science & Business Media · Zbl 1027.92022
[49] Onwujekwe, O.; Uzochukwu, B.; Eze, S.; Obikeze, E.; Okoli, C.; Ochonma, O., Improving equity in malaria treatment: relationship of socio-economic status with health seeking as well as with perceptions of ease of using the services of different providers for the treatment of malaria in nigeria, Malar. J., 7, 1-10 (2008)
[50] World Health Organization, Dengue Control (2015), World Health Organization
[51] World Health Organization, A Global Brief on Vector-Borne Diseases (2014), World Health Organization
[52] Perrings, C.; Castillo-Chavez, C.; Chowell, G.; Daszak, P.; Fenichel, E. P.; Finnoff, D.; Horan, R. D.; Kilpatrick, A. M.; Kinzig, A. P.; Kuminoff, N. V., Merging economics and epidemiology to improve the prediction and management of infectious disease, EcoHealth, 11, 464-475 (2014)
[53] Reiter, P., Climate change and mosquito-borne disease: knowing the horse before hitching the cart, Revue scientifique et technique-Office international des épizooties, 27 (2014)
[54] Rodríguez, D. J.; Torres-Sorando, L., Models of infectious diseases in spatially heterogeneous environments, Bull. Math. Biol., 63, 547-571 (2001) · Zbl 1323.92210
[55] Roiz, D.; Eritja, R.; Escosa, R.; Lucientes, J.; Marques, E.; Melero-Alcibar, R.; Ruiz, S.; Molina, R., A survey of mosquitoes breeding in used tires in spain for the detection of imported potential vector species, J. Vector Ecol., 32, 10-15 (2007)
[56] Ross, R., The Prevention of Malaria (1911), John Murray
[57] Ross, R., An application of the theory of probabilities to the study of a priori pathometry. Part i, Proc. R. Soc. Lond. A, 92, 204-230 (1916) · JFM 46.0789.01
[58] Ross, R.; Hudson, H., An application of the theory of probabilities to the study of a priori pathometry. Part ii, Proc. R. Soc. Lond. A, 93, 212-225 (1917) · JFM 46.0789.02
[59] Ross, R.; Hudson, H., An application of the theory of probabilities to the study of a priori pathometry. Part iii, Proc. R. Soc. Lond. A, 93, 225-240 (1917) · JFM 46.0789.02
[60] Ruktanonchai, N. W.; Smith, D. L.; De Leenheer, P., Parasite sources and sinks in a patched ross-macdonald malaria model with human and mosquito movement: implications for control, Math. Biosci., 279, 90-101 (2016) · Zbl 1348.92159
[61] Smith, D. L.; Dushoff, J.; McKenzie, F. E., The risk of a mosquito-borne infection in a heterogeneous environment, PLoS Biol., 2, e368 (2004)
[62] Smith, H., Cooperative systems of differential equations with concave nonlinearities, Nonlinear Anal.: Theory, Meth. Appl., 10, 1037-1052 (1986) · Zbl 0612.34035
[63] Stürchler, M. P., The vector and measures against mosquito bites, (Schlagenhauf-Lawlor, P., Travelers’ Malaria (2001)), 88-105
[64] Thiboutot, M. M.; Kannan, S.; Kawalekar, O. U.; Shedlock, D. J.; Khan, A. S.; Sarangan, G.; Srikanth, P.; Weiner, D. B.; Muthumani, K., Chikungunya: a potentially emerging epidemic, PLoS Negl Trop Dis, 4, e623 (2010)
[65] Tolle, M. A., Mosquito-borne diseases, Curr. Probl. Pediatric Adolesc. Health Care, 39, 97-140 (2009)
[66] Torres-Sorando, L.; Rodrìguez, D. J., Models of spatio-temporal dynamics in malaria, Ecol. Model., 104, 231-240 (1997)
[67] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[68] Vidyasagar, M., Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability., IEEE Trans. Autom. Control, 25, 773-779 (1980) · Zbl 0478.93044
[69] Xiao, Y.; Zou, X., Transmission dynamics for vector-borne diseases in a patchy environment, J. Math. Biol., 69, 113-146 (2014) · Zbl 1300.34189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.