×

Tracking control of nonlinear systems actuated by saturated oscillatory force generator. (English) Zbl 1532.93128

Summary: This research has been devoted to the construction of a permanent-stable algorithm for tracking control of a nonlinear 1-degree of freedom (DOF) mechanical system affected by a second-order vibratory constrained actuator. The dynamics of the actuator is involved in governing equation of the mechanical system, and using the two-step Adams-Bashforth and Adams-Moulton methods, the resultant continuous-time model is formulated in the discrete-time domain. The discrete-time model of the whole system is then employed in a discrete-time power reaching law-based controller architecture. Using the reaching law strategy and considering the saturation boundaries of the actuation system, various available bounds of position and velocity control signals can be determined with respect to the reaching law coefficients. Then, special optimization algorithms are employed to determine the optimal value of position and velocity power reaching law coefficients as well as the optimally modified trajectory references. The position and velocity control commands resulting from the concept of optimal trajectory reference, along with the optimal reaching law coefficient, ensure the permanent-stable tracking control of both position and velocity modes regarding the actuation constraint. In the next step, another concept, namely the optimal combined position-velocity controller, is taken into account, which is a Gaussian-weighted average of the position and velocity control commands to form the main control command of the proposed controller. Consequently, the designed controller will be a permanent-stable control approach that never violates the actuation constraint. Finally, numerical simulations are conducted to evaluate the performance of the proposed method for two types of desired inputs, including piecewise-step and harmonic trajectories. The results suggest the proposed controller efficiency in satisfying pre-determined characteristics.

MSC:

93C10 Nonlinear systems in control theory
70Q05 Control of mechanical systems
Full Text: DOI

References:

[1] Alipouri, Y.; Huang, B., Distributed control performance assessment and corresponding optimal controller design considering communication delays. IET Control Theory Appl., 568-576 (2020) · Zbl 07907127
[2] Athans, M., Modern Control Theory: A Self-Study Subject (1974), Center for advanced engineering study Massachussets Institute of technology
[3] Atkinson, K. E.; Han, W.; Stewart, D., Numerical Solution of Ordinary Differential Equations (2009), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. Hoboken, NJ, USA · Zbl 1168.65004
[4] Castro, R. S.; Flores, J. V.; Salton, A. T.; Gomes da Silva, J. M., Controller and anti-windup co-design for the output regulation of rational systems subject to control saturation. Int. J. Robust Nonlinear Control., 1395-1417 (2021) · Zbl 1525.93316
[5] Chaillet, A.; Loría, A.; Kelly, R., Robustness of PID-controlled manipulators vis-à-vis actuator dynamics and external disturbances. Eur. J. Control., 563-576 (2007) · Zbl 1360.93198
[6] Chang, L.; Fu, C., Designing a stabilizing controller for discrete-time nonlinear feedforward systems with unknown input saturation. Int. J. Robust Nonlinear Control., 2078-2089 (2023) · Zbl 1532.93215
[7] Dong, Y.; Song, Y.; Wei, G., Membership-function-dependent model predictive control for nonlinear systems in a piecewise-fuzzy framework. Fuzzy Sets Syst., 308-323 (2022)
[8] Elhaki, O.; Shojaei, K., A novel adaptive fuzzy reinforcement learning controller for a platoon of off-axle hitching tractor-trailers with a prescribed performance and path curvature compensation. Eur. J. Control. (2022)
[9] Endo, T.; Shiratani, N.; Yamaguchi, K.; Matsuno, F., Grasp and orientation control of an object by two Euler-Bernoulli arms with rolling constraints. J. Dyn. Syst. Meas. Control., 1-11 (2019)
[10] Fang, J.; Liu, K. Z., A control-theoretic approach for input saturated linear systems: integration of phase-shaping and gain-scheduling. ISA Trans. (2023)
[11] Fu, J.; Ma, Z.; Fu, Y.; Chai, T., Hybrid adaptive control of nonlinear systems with non-Lipschitz nonlinearities. Syst. Control Lett. (2021) · Zbl 1478.93313
[12] Galeani, S.; Tarbouriech, S.; Turner, M.; Zaccarian, L., A tutorial on modern anti-windup design. Eur. J. Control., 418-440 (2009) · Zbl 1298.93164
[13] Gao, F.; Wu, Y., Finite-time output feedback stabilisation for a class of feedforward nonlinear systems with input saturation. Int. J. Syst. Sci., 1254-1265 (2017) · Zbl 1362.93116
[14] Gao, F.; Yuan, Y.; Wu, Y., Finite-time stabilization for a class of nonholonomic feedforward systems subject to inputs saturation. ISA Trans., 193-201 (2016)
[15] Gruenwald, B. C.; Wagner, D.; Yucelen, T.; Muse, J. A., Computing actuator bandwidth limits for model reference adaptive control. Int. J. Control., 2434-2452 (2016) · Zbl 1360.93351
[16] Homaeinezhad, M. R.; Abbasi Gavari, M., Feedback control of actuation-constrained moving structure carrying Timoshenko beam. Int. J. Robust Nonlinear Control., 1785-1806 (2023) · Zbl 1532.93100
[17] Homaeinezhad, M. R.; Farzannasab, M., Switching position-torque control system for increasing servo PMDC positioning precision in presence of intense external disturbance loading. Mech. Syst. Signal Process. (2021)
[18] Homaeinezhad, M. R.; FotoohiNia, F., Tracking control of moving flexible system by incorporation of feedback-based vibrational energy sink in model predictive control algorithm. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn., 368-381 (2022)
[19] Homaeinezhad, M. R.; FotoohiNia, F., Robust nonlinear model predictive sliding mode control algorithm for saturated uncertain multivariable mechanical systems. J. Vib. Control. (2022)
[20] Homaeinezhad, M. R.; FotoohiNia, F.; Gholyan, H. M., Controlling uncertain nonlinear structural vibrations of moving continuum system by embedding a vibration monitoring unit to feedback algorithm. Struct. Control Heal. Monit., 1-22 (2020)
[21] Homaeinezhad, M. R.; FotoohiNia, F.; Gholyan, H. M., Controlling uncertain nonlinear structural vibrations of moving continuum system by embedding a vibration monitoring unit to feedback algorithm. Struct. Control Heal. Monit., e2626 (2020)
[22] Homaeinezhad, M. R.; FotoohiNia, F.; Yaqubi, S., Active predictive vibration suppression algorithm for structural stability and tracking control of nonlinear multivariable continuum-mechanics mobile systems. Optim. Control Appl. Methods, 503-525 (2021) · Zbl 1469.93022
[23] Homaeinezhad, M. R.; Saeidi Mostaghim, M. H., Synthetic Lyapunov stabilization technique for designing actuation-constrained multi-input multi-output control systems. J. Franklin Inst., 5891-5918 (2022) · Zbl 07566299
[24] Hovd, M.; Bitmead, R. R., Feedforward for stabilization. IFAC (2009)
[25] Hovd, M.; Bitmead, R. R., Feedforward for stabilization in the presence of constraints. J. Process Control., 659-665 (2012)
[26] Huang, J.; Cao, Y.; Wang, Y.-W., Adaptive proxy-based sliding mode control for a class of second-order nonlinear systems and its application to pneumatic muscle actuators. ISA Trans., 395-402 (2022)
[27] Jaafar, H. I.; Mohamed, Z.; Subha, N. A.M.; Husain, A. R.; Ismail, F. S.; Ramli, L.; Tokhi, M. O.; Shamsudin, M. A., Efficient control of a nonlinear double-pendulum overhead crane with sensorless payload motion using an improved PSO-tuned PID controller. J. Vib. Control., 907-921 (2019)
[28] Kim, J. H.; Hagiwara, T., L1 optimal controller synthesis for sampled-data systems via piecewise linear kernel approximation. Int. J. Robust Nonlinear Control., 4933-4950 (2021) · Zbl 1525.93227
[29] Li, J.; Yu, T., Optimal adaptive control for solid oxide fuel cell with operating constraints via large-scale deep reinforcement learning. Control Eng. Pract. (2021)
[30] Lima, T. A.; de Almeida Filho, M. P.; Torrico, B. C.; Nogueira, F. G.; Correia, W. B., A practical solution for the control of time-delayed and delay-free systems with saturating actuators. Eur. J. Control., 53-64 (2020) · Zbl 1429.93268
[31] Liu, M.; Zhang, J.; Shang, M., Real-time cooperative kinematic control for multiple robots in distributed scenarios with dynamic neural networks. Neurocomputing, 621-632 (2022)
[32] Liu, Z.; Yuan, C.; Yu, X.; Zhang, Y., Retrofit fault-tolerant tracking control design of an unmanned quadrotor helicopter considering actuator dynamics. Int. J. Robust. Nonlinear Control., 5293-5313 (2019) · Zbl 1430.93148
[33] Ma, X.; Huang, L.; Wen, H.; Xu, S., Deep learning-based nonlinear model predictive control of the attitude manoeuvre of a barbell electric sail through voltage regulation. Acta Astronaut., 118-128 (2022)
[34] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; Scokaert, P. O.M., Constrained model predictive control: stability and optimality. Automatica, 789-814 (2000) · Zbl 0949.93003
[35] Orłowski, J.; Chaillet, A.; Destexhe, A.; Sigalotti, M., Adaptive control of Lipschitz time-delay systems by sigma modification with application to neuronal population dynamics. Syst. Control Lett. (2022) · Zbl 1485.93294
[36] Ortega, R.; Cisneros, R.; Wang, L.; van der Schaft, A., Indirect adaptive control of nonlinearly parameterized nonlinear dissipative systems. Int. J. Robust Nonlinear Control., 5105-5119 (2022) · Zbl 1528.93111
[37] Peng, C.; Zhang, W.; Tomizuka, M., Iterative design of feedback and feedforward controller with input saturation constraint for building temperature control. Proc. Am. Control Conf., 1241-1246 (2016), 2016-July
[38] Pouilly-Cathelain, M.; Feyel, P.; Duc, G.; Sandou, G., Robust satisfaction of nonlinear performance constraints using barrier-based model predictive control. Eur. J. Control. (2022) · Zbl 1490.93030
[39] Rego, R. C.B.; Costa, M. V.S., Offline output feedback robust anti-windup MPC-LPV using relaxed LMI optimization. Eur. J. Control. (2023) · Zbl 1507.93073
[40] Song, Y.; Wang, Z.; Zou, L.; Liu, S., Endec-decoder-based N-step model predictive control: detectability, stability and optimization. Automatica (2022) · Zbl 1478.93176
[41] Trodden, P.; Richards, A., Cooperative distributed MPC of linear systems with coupled constraints. Automatica, 479-487 (2013) · Zbl 1259.93014
[42] Turner, M. C.; Kerr, M., A nonlinear modification for improving dynamic anti-windup compensation. Eur. J. Control., 44-52 (2018) · Zbl 1390.93306
[43] Turner, M. C.; Sofrony, J.; Prempain, E., Anti-windup for model-reference adaptive control schemes with rate-limits. Syst. Control Lett. (2020) · Zbl 1441.93153
[44] Wang, B.; Derbeli, M.; Barambones, O.; Yousefpour, A.; Jahanshahi, H.; Bekiros, S.; Aly, A. A.; Alharthi, M. M., Experimental validation of disturbance observer-based adaptive terminal sliding mode control subject to control input limitations for SISO and MIMO systems. Eur. J. Control., 151-163 (2022) · Zbl 1483.93309
[45] Wang, B.; Zhang, Y.; Zhang, W., Integrated path planning and trajectory tracking control for quadrotor UAVs with obstacle avoidance in the presence of environmental and systematic uncertainties: theory and experiment. Aerosp. Sci. Technol. (2022)
[46] Wang, R.; Wang, W.; Chen, Z.; Sang, Z.; Wang, C.; Lu, K.; Han, F.; Ju, B., Modeling and compensation for dynamic hysteresis of piezoelectric actuators based on Lissajous curve. Sens. Actuators A Phys. (2022)
[47] Wang, R.; Zhang, X.; Zhu, B.; Qu, F.; Chen, B.; Liang, J., Hybrid explicit-implicit topology optimization method for the integrated layout design of compliant mechanisms and actuators. Mech. Mach. Theory (2022)
[48] Wang, Y.; Yang, C.; Yang, H., Neural network-based simulation and prediction of precise airdrop trajectory planning. Aerosp. Sci. Technol. (2022)
[49] Wu, M.; Taetz, B.; He, Y.; Bleser, G.; Liu, S., An adaptive learning and control framework based on dynamic movement primitives with application to human-robot handovers. Rob. Auton. Syst. (2022)
[50] Xu, Z.; Li, X.; Li, S.; Wu, H.; Zhou, X., Dynamic neural networks based adaptive optimal impedance control for redundant manipulators under physical constraints. Neurocomputing, 149-160 (2022)
[51] Yu, S.; Maier, C.; Chen, H.; Allgöwer, F., Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. Syst. Control Lett., 194-200 (2013) · Zbl 1259.93048
[52] Zaheer, M. H.; Arthur, K. M.; Yoon, S. Y.(Pablo), Derivative feedback control of nonlinear systems with uncertain equilibrium states and actuator constraints. Automatica (2021) · Zbl 1461.93409
[53] Zhang, S.; Xiong, J.; Shi, J., A linear-quadratic optimal control problem of stochastic differential equations with delay and partial information. Syst. Control Lett. (2021) · Zbl 1480.93454
[54] Zhu, J., Nonlinear dynamic investigation and anti-bifurcation control of a boiler-turbine unit via dual-mode fuzzy model predictive control strategy. J. Franklin Inst., 7365-7393 (2021) · Zbl 1472.93042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.