×

Adaptive control of Lipschitz time-delay systems by sigma modification with application to neuronal population dynamics. (English) Zbl 1485.93294

Summary: Adaptive control using the \(\sigma \)-modification provides an easily implementable way to stabilize systems with uncertain or fluctuating parameters. Motivated by a specific application from neuroscience, we extend here this methodology to nonlinear time-delay systems ruled by globally Lipschitz dynamics. In order to make the result more handy in practice, we provide an explicit construction of a Lyapunov-Krasovskii functional (LKF) with linear bounds and strict dissipation rate based on the knowledge of an LKF with quadratic bounds and point-wise dissipation rate. When applied to a model of neuronal populations involved in Parkinson’s disease, the benefits with respect to a pure proportional stabilization scheme are discussed through numerical simulations.

MSC:

93C40 Adaptive control/observation systems
93C43 Delay control/observation systems
93C10 Nonlinear systems in control theory
92B20 Neural networks for/in biological studies, artificial life and related topics

References:

[1] Ioannou, P. A.; Kokotovic, P. V., Instability analysis and improvement of robustness of adaptive control, Automatica, 20, 583-594 (1984) · Zbl 0548.93050
[2] Narendra, K. S.; Tripathi, S. S.; Lueders, G.; Kudva, P., Adaptive Control Using Lyapunov’s Direct MethodTechnical Report (1971), Becton Center, Yale University: Becton Center, Yale University New Haven, Connecticut
[3] Ioannou, P. A.; Fidan, B., Adaptive Control Tutorial (2006), SIAM · Zbl 1116.93001
[4] Fradkov, A. L.; Miroshnik, I. V.; Nikiforov, V. O., Nonlinear and Adaptive Control of Complex Systems (1999), Springer Science & Business Media · Zbl 0934.93002
[5] Hsu, L.; Costa, R., Bursting phenomena in continuous-time adaptive systems with a \(\sigma \)-modification, IEEE Trans. Automat. Control, 32, 1, 84-86 (1987) · Zbl 0614.93042
[6] Huang, J.; Lewis, F. L., Neural-network predictive control for nonlinear dynamic systems with time-delay, IEEE Trans. Neural Netw., 14, 2, 377-389 (2003)
[7] Richert, D.; Macnab, C. J.B.; Pieper, J. K., Adaptive control for haptics with time-delay, (49th IEEE Conference on Decision and Control. 49th IEEE Conference on Decision and Control, CDC (2010), IEEE), 3650-3655
[8] Chan, L.; Naghdy, F.; Stirling, D., Application of adaptive controllers in teleoperation systems: A survey, IEEE Trans. Hum.-Mach. Syst., 44, 3, 337-352 (2014)
[9] Nevado-Holgado, A. J.; Terry, J. R.; Bogacz, R., Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, J. Neurosci., 30, 37, 12340-12352 (2010)
[10] Pasillas-Lépine, W., Delay-induced oscillations in Wilson and Cowan’s model: An analysis of the subthalamo-pallidal feedback loop in healthy and Parkinsonian subjects, Biol. Cybernet., 107, 3, 289-308 (2013) · Zbl 1267.92034
[11] Pavlides, A.; John Hogan, S.; Bogacz, R., Improved conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, Eur. J. Neurosci., 36, 2, 2229-2239 (2012)
[12] Haidar, I.; Pasillas-Lépine, W.; Chaillet, A.; Panteley, E.; Palfi, S.; Senova, S., A firing-rate regulation strategy for closed-loop deep brain stimulation, Biol. Cybernet., 110, 1, 55-71 (2016) · Zbl 1345.92040
[13] W. Pasillas-Lépine, I. Haidar, A. Chaillet, E. Panteley, Closed-loop deep brain stimulation based on firing-rate regulation, in: Proc. 6th IEEE EMBS Conf. on Neural Engineering, San Diego, USA, 2013. · Zbl 1345.92040
[14] A. Chaillet, J. Orłowski, P. Pepe, A relaxed Lyapunov-Krasovskii condition for global exponential stability of Lipschitz time-delay systems, in: 58th IEEE Conference on Decision and Control, 2019.
[15] Fleming, J.; Orłowski, J.; Lowery, M. M.; Chaillet, A., Self-tuning deep brain stimulation controller for suppression of beta oscillations: analytical derivation and numerical validation, Front. Neurosci., 14, 639 (2020)
[16] J. Orłowski, A. Chaillet, M. Sigalotti, A. Destexhe, Adaptive scheme for pathological oscillations disruption in a delayed neuronal population model, in: Proc. IEEE Conf. on Decision and Control, Miami, USA, 2018.
[17] Vorotnikov, V. I., Partial Stability and Control (1998), Birkhauser · Zbl 0891.93004
[18] Orłowski, J.; Chaillet, A.; Sigalotti, M., Counterexample to a Lyapunov condition for uniform asymptotic partial stability, IEEE Control Syst. Lett., 4, 2, 397-401 (2020)
[19] Wilson, H. R.; Cowan, J. D., Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12, 1, 1-24 (1972)
[20] W. Pasillas-Lépine, Equilibrium and stability of Wilson and Cowan’s time coarse graining model, in: Proceedings of Mathematical Theory of Network Systems, 2012.
[21] Krstić, M., Delay Compensation for Nonlinear, Adaptive, and PDE Systems (2009), Brikhäuser · Zbl 1181.93003
[22] Zhu, Y.; Krstić, M., Delay-Adaptive Linear Control (2020), Princeton University Press · Zbl 1446.93002
[23] Evesque, S.; Annaswamy, A.; Niculescu, S.; Dowling, A., Adaptive control of a class of time-delay systems, J. Dyn. Sys. Meas. Control, 125, 2, 186-193 (2003)
[24] Bresch-Pietri, D.; Chauvin, J.; Petit, N., Adaptive control scheme for uncertain time-delay systems, Automatica, 48, 8, 1536-1552 (2012) · Zbl 1268.93080
[25] Liu, Z.; Wu, Y., Universal strategies to explicit adaptive control of nonlinear time-delay systems with different structures, Automatica, 89, 151-159 (2018) · Zbl 1387.93101
[26] Jiao, X.; Shen, T., Adaptive feedback control of nonlinear time-delay systems: the LaSalle-Razumikhin-based approach, IEEE Trans. Automat. Control, 50, 711, 1909-1913 (2005) · Zbl 1365.93185
[27] Zhang, X.; Lin, Y., Adaptive output feedback control for a class of large-scale nonlinear time-delay systems, Automatica, 52, 87-94 (2015) · Zbl 1309.93088
[28] Driver, R. D., Existence and stability of solutions of a delay-differential system, Arch. Ration. Mech. Anal., 10, 1, 401-426 (1962) · Zbl 0105.30401
[29] Pepe, P., On Liapunov-Krasovskii functionals under Carathéodory conditions, Automatica, 43, 4, 701-706 (2007) · Zbl 1114.93073
[30] Pepe, P.; Karafyllis, I., Converse Lyapunov-krasovskii theorems for systems described by neutral functional differential equations in Hale’s form, Internat. J. Control, 86, 2, 232-243 (2013) · Zbl 1278.93219
[31] Hale, Jack, P., Theory of Functional Differential Equations, x+365 (1977), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0352.34001
[32] Pepe, P.; Jiang, Z., A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems, Systems Control Lett., 55, 12, 1006-1014 (2006) · Zbl 1120.93361
[33] Ito, H.; Pepe, P.; Jiang, Z., A small-gain condition for iISS of interconnected retarded systems based on Lyapunov-Krasovskii functionals, Automatica, 46, 10, 1646-1656 (2010) · Zbl 1204.93105
[34] F. Mazenc, H. Ito, P. Pepe, Construction of Lyapunov functionals for coupled differential and continuous time difference equations, in: Proc. IEEE Conf. on Dec. and Control, 2013, pp. 2245-2250.
[35] Pyragas, K.; Pyragas, V.; Kiss, I.; Hudson, J., Adaptive control of unknown unstable steady states of dynamical systems, Phys. Rev. E, 70, 2, 12 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.