×

Retrofit fault-tolerant tracking control design of an unmanned quadrotor helicopter considering actuator dynamics. (English) Zbl 1430.93148

Summary: This paper presents a retrofit fault-tolerant tracking control (FTTC) design method with application to an unmanned quadrotor helicopter (UQH). The proposed retrofit fault-tolerant tracking controller is developed to accommodate loss-of-effectiveness faults in the actuators of UQH. First, a state feedback tracking controller acting as the normal controller is designed to guarantee the stability and satisfactory performance of UQH in the absence of actuator faults, while actuator dynamics of UQH are also considered in the controller design. Then, a retrofit control mechanism with integration of an adaptive fault estimator and an adaptive fault compensator is devised against the adverse effects of actuator faults. Next, the proposed retrofit FTTC strategy, which is synthesized by the normal controller and an additional reconfigurable fault compensating mechanism, takes over the control of the faulty UQH to asymptotically stabilize the closed-loop system with an acceptable performance degradation in the presence of actuator faults. Finally, both numerical simulations and practical experiments are conducted in order to demonstrate the effectiveness of the proposed FTTC methodology on the asymptotic convergence of tracking error for several combinations of loss-of-effectiveness faults in actuators.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93C40 Adaptive control/observation systems
93D15 Stabilization of systems by feedback
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] ZhangYM, ChamseddineA, RabbathCA, et al. Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J Franklin Inst. 2013;350(9):2396‐2422. · Zbl 1287.93058
[2] YuanC, ZhangYM, LiuZX. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can J Forest Res. 2015;45(7):783‐792.
[3] MetniN, HamelT. A UAV for bridge inspection: visual servoing control law with orientation limits. Automat Constr. 2007;17(1):3‐10.
[4] HoffmannGM, HuangH, WaslanderSL, TomlinCJ. Precision flight control for a multi‐vehicle quadrotor helicopter testbed. Control Eng Pract. 2011;19(9):1023‐1036.
[5] MellingerD, MichaelN, KumarV. Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int J Robot Res. 2012;31(5):664‐674.
[6] BernardM, KondakK, MazaI, OlleroA. Autonomous transportation and deployment with aerial robots for search and rescue missions. J Field Robot. 2001;28(6):914‐931.
[7] SinghSN, PachterM, ChandlerP, BandaS, RadmussenS, SchumacherC. Input‐output invertibility and sliding mode control for close formation flying of multiple UAVs. Int J Robust Nonlinear Control. 2000;10(10):779‐797. · Zbl 0953.93543
[8] SinghSN, ZhangR, ChandlerP, BandaS. Decentralized nonlinear robust control of UAVs in close formation. Int J Robust Nonlinear Control. 2003;13(11):1057‐1078. · Zbl 1049.93064
[9] FrancoE, ParisiniT, PolycarpouMM. Design and stability analysis of cooperative receding‐horizon control of linear discrete‐time agents. Int J Robust Nonlinear Control. 2007;17(10‐11):982‐1001. · Zbl 1266.93005
[10] YuX, LiuZX, ZhangYM. Fault‐tolerant formation control of multiple UAVs in the presence of actuator faults. Int J Robust Nonlinear Control. 2016;26(12):2668‐2685. · Zbl 1346.93046
[11] MichaelN, FinkJ, KumarV. Cooperative manipulation and transportation with aerial robots. Auton Robots. 2011;30(1):73‐86.
[12] MazaI, KondakK, BernardM, OlleroA. Multi‐UAV cooperation and control for load transportation and deployment. J Intelligent Robot Syst. 2010;57(1‐4):417‐449. · Zbl 1203.93147
[13] MammarellaM, CampaG, NapolitanoMR, FravoliniML, GuY, PerhinschiMG. Machine vision/GPS integration using EKF for the UAV aerial refueling problem. IEEE Trans Syst Man Cybern B (Applications and Reviews). 2008;38(6):791‐801.
[14] EscareñoJ, SalazarS, RomeroH, LozanoR. Trajectory control of a quadrotor subject to 2D wind disturbances. J Intell Robot Syst. 2013;70(1‐4):51‐63.
[15] PoundsPE, BersakDR, DollarAM. Stability of small‐scale UAV helicopters and quadrotors with added payload mass under PID control. Auton Robots. 2012;33(1‐2):129‐142.
[16] AlexisK, NikolakopoulosG, TzesA. Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng Pract. 2011;19(10):1195‐1207.
[17] CastilloP, DzulA, LozanoR. Real‐time stabilization and tracking of a four‐rotor mini rotorcraft. IEEE Trans Control Syst Technol. 2004;12(4):510‐516.
[18] Le BrasF, HamelT, MahonyR, TreilA. Output feedback observation and control for visual servoing of VTOL UAVs. Int J Robust Nonlinear Control. 2011;21(9):1008‐1030. · Zbl 1215.93099
[19] ZhangYM, JiangJ. Bibliographical review on reconfigurable fault‐tolerant control systems. Annu Rev Control. 2008;32(2):229‐252.
[20] LiuZX, YuanC, ZhangYM, LuoJ. A learning‐based fault tolerant tracking control of an unmanned quadrotor helicopter. J Intell Robotic Syst. 2016;84(1):145‐162.
[21] AmoozgarMH, ChamseddineA, ZhangYM. Experimental test of a two‐stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. J Intell Robot Syst. 2013;70(1‐4):107‐117.
[22] LiT, ZhangYM, GordonBW. Passive and active nonlinear fault‐tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proc Inst Mech Engineers, Part I: J Syst Control Eng. 2013;227(1):12‐23.
[23] LanzonA, FreddiA, LonghiS. Flight control of a quadrotor vehicle subsequent to a rotor failure. J Guidance Control Dyn. 2014;37(2):580‐591.
[24] EdwardsC, AlwiH, TanCP. Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems. Int J Appl Math Comput Sci. 2012;22(1):109‐124. · Zbl 1273.93037
[25] BarghandanS, BadamchizadehMA, Jahed‐MotlaghMR. Improved adaptive fuzzy sliding mode controller for robust fault tolerant of a quadrotor. Int J Control Autom Syst. 2017;15(1):427‐441.
[26] CastaldiP, MimmoN, SimaniS. Differential geometry based active fault tolerant control for aircraft. Control Eng Pract. 2014;32:227‐235.
[27] SadeghzadehI, MehtaA, ZhangYM. Fault‐tolerant control of quadrotor helicopter using gain‐scheduled PID and model reference adaptive control. J Unmanned Syst Technol. 2015;3(3):108‐118.
[28] BüyükkabasakalK, FidanB, SavranA. Mixing adaptive fault tolerant control of quadrotor UAV. Asian J Control. 2017;19(4):1441‐1454. https://doi.org/10.1002/asjc.1479 · Zbl 1370.93092 · doi:10.1002/asjc.1479
[29] FreddiA, LanzonA, LonghiS. A feedback linearization approach to fault tolerance in quadrotor vehicles. IFAC Proc Vol. 2011;44(1):5413‐5418.
[30] CenZ, NouraH, YounesYA. Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs. Int J Appl Math Comput Sci. 2015;25(1):159‐174. · Zbl 1322.93035
[31] RotondoD, NejjariF, PuigV. Robust quasi‐LPV model reference FTC of a quadrotor UAV subject to actuator faults. Int J Appl Math Comput Sci. 2015;25(1):7‐22. · Zbl 1322.93042
[32] CristofaroA, JohansenTA. Fault tolerant control allocation using unknown input observers. Automatica. 2014;50(7):1891‐1897. · Zbl 1296.93045
[33] TohidiSS, SedighA, BuzorgniaD. Fault tolerant control design using adaptive control allocation based on the pseudo inverse along the null space. Int J Robust Nonlinear Control. 2016;26(16):3541‐3557. https://doi.org/10.1002/rnc.3518 · Zbl 1351.93048 · doi:10.1002/rnc.3518
[34] RodriguesM, HamdiH, TheilliolD, MechmecheC. Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems. Int J Robust Nonlinear Control. 2015;25(5):673‐688. · Zbl 1306.93067
[35] Montes de OcaS, Tornil‐SinS, PuigV, TheilliolD. Fault‐tolerant control design using the linear parameter varying approach. Int J Robust Nonlinear Control. 2014;24(14):1969‐1988. · Zbl 1301.93056
[36] TabatabaeipourSM, StoustrupJ, BakT. Fault‐tolerant control of discrete‐time LPV systems using virtual actuators and sensors. Int J Robust Nonlinear Control. 2015;25(5):707‐734. · Zbl 1306.93026
[37] YetendjeA, SeronMM, De DonáJA. Robust multiactuator fault‐tolerant MPC design for constrained systems. Int J Robust Nonlinear Control. 2013;23(16):1828‐1845. · Zbl 1285.93085
[38] ChenFY, WenL, ZhangKK, TaoG, JiangB. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 2016;85(2):1281‐1295. · Zbl 1355.93127
[39] ChenFY, JiangR, ZhangK, JiangB, TaoG. Robust backstepping sliding‐mode control and observer‐based fault estimation for a quadrotor UAV. IEEE Trans Indust Electron. 2016;63(8):5044‐5056.
[40] ChenFY, CaiL, JiangB, TaoG. Direct self‐repairing control for a helicopter via quantum multi‐model and disturbance observer. Int J Syst Sci. 2016;47(3):533‐543. · Zbl 1333.93136
[41] LiuZX, YuanC, ZhangYM. Active fault‐tolerant control of unmanned quadrotor helicopter using linear parameter varying technique. J Intell Robot Syst. 2017;1‐22. https://doi.org/10.1007/s10846-017-0535-4 · doi:10.1007/s10846-017-0535-4
[42] BoussaidB, AubrunC, JiangJ, AbdelkrimMN. FTC approach with actuator saturation avoidance based on reference management. Int J Robust Nonlinear Control. 2014;24(17):2724‐2740. · Zbl 1304.49054
[43] JinX. Adaptive fault tolerant control for a class of input and state constrained MIMO nonlinear systems. Int J Robust Nonlinear Control. 2016;26(2):286‐302. · Zbl 1333.93141
[44] ChwaD, ChoiJY, SeoJH. Compensation of actuator dynamics in nonlinear missile control. IEEE Trans Control Syst Technol. 2004;12(4):620‐626.
[45] SchiermanJD, WardDG, HullJR, GandhiN, OppenheimerM, DomanDB. Integrated adaptive guidance and control for re‐entry vehicles with flight test results. J Guidance Control Dyn. 2004;27(6):975‐988.
[46] BenosmanM, LumKY. Online references reshaping and control reallocation for nonlinear fault tolerant control. IEEE Trans Control Syst Technol. 2009;17(2):366‐379.
[47] ChamseddineA, TheilliolD, ZhangYM, JoinC, RabbathCA. Active fault‐tolerant control system design with trajectory re‐planning against actuator faults and saturation: application to a quadrotor unmanned aerial vehicle. Int J Adapt Control Signal Process. 2015;29(10):1‐23. · Zbl 1336.93046
[48] ZhangYM, JiangJ. Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans Aerosp Electron Syst. 2003;39(3):838‐848.
[49] BatemanF, NouraH, OuladsineM. Fault diagnosis and fault‐tolerant control strategy for the aerosonde UAV. IEEE Trans Aerosp Electron Syst. 2011;47(3):2119‐2137.
[50] BoškovićJD, PrasanthR, MehraRK. Retrofit fault‐tolerant flight control design under control effector damage. J Guidance Control Dyn. 2007;30(3):703‐712.
[51] BoškovićJD. A new decentralized retrofit adaptive faulttolerant flight control design. Int J Adapt Control Signal Process. 2014;28(9):778‐797. · Zbl 1327.93241
[52] BoydSP, El GhaouiL, FeronE, BalakrishnanV. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics: Philadelphia, 1994. · Zbl 0816.93004
[53] ApkarianP, TuanHD, BernussouJ. Continuous‐time analysis, eigenstructure assignment, and H_2 synthesis with enhanced linear matrix inequalities (LMI) characterizations. IEEE Trans Autom Control. 2001;46(12):1941‐1946. · Zbl 1003.93016
[54] YeD, YangGH. Adaptive fault‐tolerant tracking control against actuator faults with application to flight control. IEEE Trans Control Syst Technol. 2006;14(6):1088‐1096.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.