×

Multiple-scattering frequency-time hybrid solver for the wave equation in interior domains. (English) Zbl 1531.65208

Summary: This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-dimensional interior spatial domains. The approach relies on four main elements, namely, (1) A multiple scattering strategy that decomposes a given interior time-domain problem into a sequence of limited-duration time-domain problems of scattering by overlapping open arcs, each one of which is reduced (by means of the Fourier transform) to a sequence of Helmholtz frequency-domain problems; (2) Boundary integral equations on overlapping boundary patches for the solution of the frequency-domain problems in point (1); (3) A smooth “Time-windowing and recentering” methodology that enables both treatment of incident signals of long duration and long time simulation; and, (4) A Fourier transform algorithm that delivers numerically dispersionless, spectrally-accurate time evolution for given incident fields. By recasting the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the proposed approach regularizes the full interior frequency domain problem – which, if obtained by either Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsulate infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the accuracy and efficiency of the proposed methodology.

MSC:

65M80 Fundamental solutions, Green’s function methods, etc. for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation
65R20 Numerical methods for integral equations
65T50 Numerical methods for discrete and fast Fourier transforms

References:

[1] Aimi, A., On the energetic Galerkin boundary element method applied to interior wave propagation problems, J. Comput. Appl. Math., 1746-1754 (2011) · Zbl 1209.65094 · doi:10.1016/j.cam.2010.02.011
[2] Amlani, Faisal, An FC-based spectral solver for elastodynamic problems in general three-dimensional domains, J. Comput. Phys., 333-354 (2016) · Zbl 1351.74162 · doi:10.1016/j.jcp.2015.11.060
[3] Atkinson, Kendall E., The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs, Math. Comp., 119-139 (1991) · Zbl 0713.65097 · doi:10.2307/2008533
[4] T. G. Anderson, Hybrid frequency-time analysis and numerical methods for time-dependent wave propagation, Ph.D. Thesis, California Institute of Technology, 2020.
[5] Anderson, Thomas G., High-order, dispersionless “fast-hybrid” wave equation solver. Part I: \( \mathcal{O}(1)\) sampling cost via incident-field windowing and recentering, SIAM J. Sci. Comput., A1348-A1379 (2020) · Zbl 1447.65108 · doi:10.1137/19M1251953
[6] Babu\v{s}ka, Ivo M., Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal., 2392-2423 (1997) · Zbl 0956.65095 · doi:10.1137/S0036142994269186
[7] Baker, Bevan B., The Mathematical Theory of Huygens’ Principle, vii+155 pp. (1939), Oxford University Press, New York · JFM 65.1286.02
[8] Bamberger, A., Formulation variationnelle espace-temps pour le calcul par potentiel retard\'{e} de la diffraction d’une onde acoustique. I, Math. Methods Appl. Sci., 405-435 (1986) · Zbl 0618.35069
[9] Banjai, L., Fast convolution quadrature for the wave equation in three dimensions, J. Comput. Phys., 103-126 (2014) · Zbl 1352.65320 · doi:10.1016/j.jcp.2014.08.049
[10] Bansal, Pratyuksh, Space-time discontinuous Galerkin approximation of acoustic waves with point singularities, IMA J. Numer. Anal., 2056-2109 (2021) · Zbl 07528299 · doi:10.1093/imanum/draa088
[11] G. Bao, O. P. Bruno, and T. Yin, Multiple-scattering frequency-time hybrid integral equation solver for the wave equation problems with bounded obstacles, In preparation.
[12] Barnett, Alex, High-order discretization of a stable time-domain integral equation for 3D acoustic scattering, J. Comput. Phys., 109047, 19 pp. (2020) · Zbl 1453.65447 · doi:10.1016/j.jcp.2019.109047
[13] Bauinger, Christoph, “Interpolated factored green function” method for accelerated solution of scattering problems, J. Comput. Phys., Paper No. 110095, 25 pp. (2021) · Zbl 07506526 · doi:10.1016/j.jcp.2020.110095
[14] Betcke, T., Overresolving in the Laplace domain for convolution quadrature methods, SIAM J. Sci. Comput., A188-A213 (2017) · Zbl 1360.65232 · doi:10.1137/16M106474X
[15] Bruno, Oscar P., A Chebyshev-based rectangular-polar integral solver for scattering by geometries described by non-overlapping patches, J. Comput. Phys., 109740, 17 pp. (2020) · Zbl 07508365 · doi:10.1016/j.jcp.2020.109740
[16] O. P. Bruno and S. Lintner, Second-kind integral solvers for TE and TM problems of diffraction by open arcs, Radio Sci. 47 (2012), no. 6.
[17] Bruno, Oscar P., A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications, J. Comput. Phys., 80-110 (2001) · Zbl 1052.76052 · doi:10.1006/jcph.2001.6714
[18] Bruno, Oscar P., High-order unconditionally stable FC-AD solvers for general smooth domains. I. Basic elements, J. Comput. Phys., 2009-2033 (2010) · Zbl 1185.65184 · doi:10.1016/j.jcp.2009.11.020
[19] Bruno, Oscar P., Regularized integral equation methods for elastic scattering problems in three dimensions, J. Comput. Phys., 109350, 21 pp. (2020) · Zbl 1436.65211 · doi:10.1016/j.jcp.2020.109350
[20] Bruno, Oscar P., A windowed Green function method for elastic scattering problems on a half-space, Comput. Methods Appl. Mech. Engrg., Paper No. 113651, 19 pp. (2021) · Zbl 1506.74162 · doi:10.1016/j.cma.2020.113651
[21] Chen, Q., A sampling method for inverse scattering in the time domain, Inverse Problems, 085001, 17 pp. (2010) · Zbl 1197.35315 · doi:10.1088/0266-5611/26/8/085001
[22] Chen, Xinfu, Maxwell’s equations in a periodic structure, Trans. Amer. Math. Soc., 465-507 (1991) · Zbl 0727.35131 · doi:10.2307/2001542
[23] Costabel, Martin, Asymptotics without logarithmic terms for crack problems, Comm. Partial Differential Equations, 869-926 (2003) · Zbl 1103.35321 · doi:10.1081/PDE-120021180
[24] DeSanto, J. A., On the derivation of boundary integral equations for scattering by an infinite two-dimensional rough surface, J. Math. Phys., 894-912 (1998) · Zbl 0916.76079 · doi:10.1063/1.532359
[25] Douglas, Jim, Jr., Frequency domain treatment of one-dimensional scalar waves, Math. Models Methods Appl. Sci., 171-194 (1993) · Zbl 0783.65070 · doi:10.1142/S0218202593000102
[26] T. Ha-Duong, On retarded potential boundary integral equations and their discretisation, Topics in Computational Wave Propagation: Direct and Inverse Problems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 301-336. · Zbl 1051.78018
[27] French, Donald A., A continuous space-time finite element method for the wave equation, Math. Comp., 491-506 (1996) · Zbl 0846.65048 · doi:10.1090/S0025-5718-96-00685-0
[28] Grote, Marcus J., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 2408-2431 (2006) · Zbl 1129.65065 · doi:10.1137/05063194X
[29] Hassell, Matthew E., A new and improved analysis of the time domain boundary integral operators for the acoustic wave equation, J. Integral Equations Appl., 107-136 (2017) · Zbl 1361.65075 · doi:10.1216/JIE-2017-29-1-107
[30] Labarca, Ignacio, Acoustic scattering problems with convolution quadrature and the method of fundamental solutions, Commun. Comput. Phys., 985-1008 (2021) · Zbl 1473.65329 · doi:10.4208/cicp.oa-2020-0249
[31] Laliena, Antonio R., Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math., 637-678 (2009) · Zbl 1178.65117 · doi:10.1007/s00211-009-0220-z
[32] Lee, Jin-Fa, Time-domain finite-element methods, IEEE Trans. Antennas and Propagation, 430-442 (1997) · Zbl 0945.78009 · doi:10.1109/8.558658
[33] Y. Li, W. Zheng, and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math. 1 (2020), no. 3, 530-560.
[34] Lintner, St\'{e}phane K., A generalized Calder\'{o}n formula for open-arc diffraction problems: theoretical considerations, Proc. Roy. Soc. Edinburgh Sect. A, 331-364 (2015) · Zbl 1322.65111 · doi:10.1017/S0308210512000807
[35] Liu, Yijun, Fast Multipole Boundary Element Method, xviii+235 pp. (2009), Cambridge University Press, Cambridge · doi:10.1017/CBO9780511605345
[36] R. L\"oscher, O. Steinbach, and M. Zank, Numerical results for an unconditionally stable space-time finite element method for the wave equation, 2103.04324.
[37] Lubich, Ch., On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 365-389 (1994) · Zbl 0795.65063 · doi:10.1007/s002110050033
[38] MacCamy, R. C., Low frequency acoustic oscillations, Quart. Appl. Math., 247-255 (1965) · Zbl 0147.09403 · doi:10.1090/qam/189397
[39] E. Mecocci, L. Misici, M. C. Recchioni, and F. Zirilli, A new formalism for time-dependent wave scattering from a bounded obstacle, J. Acoust. Soc. Am. 107 (2000), 1825-1840.
[40] Ne\v{c}as, Jind\v{r}ich, Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Mathematics, xvi+372 pp. (2012), Springer, Heidelberg · Zbl 1246.35005 · doi:10.1007/978-3-642-10455-8
[41] T. V. Petersdorff and E. P. Stephan, A direct boundary element method for interface crack problems, Computational Mechanics ’88, Springer, 1988, pp. 329-333.
[42] Sayas, Francisco-Javier, Retarded Potentials and Time Domain Boundary Integral Equations, Springer Series in Computational Mathematics, xv+242 pp. (2016), Springer, [Cham] · Zbl 1346.65047 · doi:10.1007/978-3-319-26645-9
[43] Steinbach, Olaf, A new approach to space-time boundary integral equations for the wave equation, SIAM J. Math. Anal., 1370-1392 (2022) · Zbl 1484.35145 · doi:10.1137/21M1420034
[44] Steinbach, Olaf, Towards coercive boundary element methods for the wave equation, J. Integral Equations Appl., 501-515 (2022) · Zbl 1512.35398 · doi:10.1216/jie.2022.34.501
[45] Stephan, Ernst P., An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems, Applicable Anal., 183-219 (1984) · doi:10.1080/00036818408839520
[46] J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941. · JFM 67.1119.01
[47] Taflove, Allen, Computational Electrodynamics, xviii+599 pp. (1995), Artech House, Inc., Boston, MA · Zbl 0840.65126
[48] Werner, P., Low frequency asymptotics for the reduced wave equation in two-dimensional exterior spaces, Math. Methods Appl. Sci., 134-156 (1986) · Zbl 0609.35028 · doi:10.1002/mma.1670080110
[49] Xing, Yulong, Energy conserving local discontinuous Galerkin methods for wave propagation problems, Inverse Probl. Imaging, 967-986 (2013) · Zbl 1273.65181 · doi:10.3934/ipi.2013.7.967
[50] Y\i lmaz, Ali E., Time domain adaptive integral method for surface integral equations, IEEE Trans. Antennas and Propagation, 2692-2708 (2004) · Zbl 1368.78198 · doi:10.1109/TAP.2004.834399
[51] X. Yuan, G. Bao, and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math. 12 (2020) 316-345.
[52] Yue, Yang, Time domain linear sampling method for inverse scattering problems with cracks, East Asian J. Appl. Math., 96-110 (2022) · Zbl 1485.35430 · doi:10.4208/eajam.120421.190721
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.