×

A windowed Green function method for elastic scattering problems on a half-space. (English) Zbl 1506.74162

Summary: This paper presents a windowed Green function (WGF) method for the numerical solution of problems of elastic scattering by “locally-rough surfaces” (i.e., local perturbations of a half space), under either Dirichlet or Neumann boundary conditions, and in both two and three spatial dimensions. The proposed WGF method relies on an integral-equation formulation based on the free-space Green function, together with smooth operator windowing (based on a “slow-rise” windowing function) and efficient high-order singular-integration methods. The approach avoids the evaluation of the expensive layer Green function for elastic problems on a half-space, and it yields uniformly fast convergence for all incident angles. Numerical experiments for both two and three dimensional problems are presented, demonstrating the accuracy and super-algebraically fast convergence of the proposed method as the window-size grows.

MSC:

74J20 Wave scattering in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics

References:

[1] Sherwood, J. W.C., Elastic wave propagation in a semi-infinite solid medium, Proc. Phys. Soc., 71, 207-219 (1958) · Zbl 0083.40403
[2] Achenbach, J. D., Wave Propagation in Elastic Solids (1973), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam · Zbl 0268.73005
[3] Aki, K.; Richards, P. G., Quantitative Seismology (2002), University Science Books, Mill Valley: University Science Books, Mill Valley California
[4] Shearer, P. M., Introduction To Seismology (2009), Cambridge University Press: Cambridge University Press New York
[5] Arens, T., The Scattering of Elastic Waves By Rough Surfaces (2000), Brunel University, (Ph.D. thesis) · Zbl 0961.74035
[6] Arens, T., Uniqueness for elastic wave scattering by rough surfaces, SIAM J. Math. Anal., 33, 461-476 (2001) · Zbl 1077.74025
[7] Arens, T., Existence of solution in elastic wave scattering by unbounded rough surfaces, Math. Methods Appl. Sci., 25, 507-528 (2002) · Zbl 1019.74020
[8] Bao, G.; Yin, T., Recent progress on the study of direct and inverse elastic scattering problems (in Chinese), Sci. Sin. Math., 47, 10, 1103-1118 (2017) · Zbl 1499.74059
[9] Elschner, J.; Hu, G., Elastic scattering by unbounded rough surface, SIAM J. Math. Anal., 44, 6, 4101-4127 (2012) · Zbl 1335.74029
[10] Elschner, J.; Hu, G., Elastic scattering by unbounded rough surfaces: Solvability in weighted Sobolev spaces, Appl. Anal., 94, 251-278 (2015) · Zbl 1307.74018
[11] Hu, G.; Liu, X.; Qu, F.; Zhang, B., Variational approach to rough surface scattering problems with Neumann and generalized impedance boundary conditions, Commun. Math. Sci., 13, 511-537 (2015) · Zbl 1328.35231
[12] Hsiao, G. C.; Wendland, W. L., (Boundary Integral Equations. Boundary Integral Equations, Applied Mathematical Sciences, vol. 164 (2008), Springer-verlag) · Zbl 1157.65066
[13] Nédélec, J. C., Acoustic and electromagnetic equations: Integral representations for harmonic problems (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0981.35002
[14] Bruno, O. P.; Kunyansky, L. A.; fast, A., High-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications, J. Comput. Phys., 169, 1, 80-110 (2001) · Zbl 1052.76052
[15] Chaillat, S.; Bonnet, M.; Semblat, J. F., A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain, Comput. Methods Appl. Mech. Engrg., 197, 4233-4249 (2008) · Zbl 1194.74109
[16] Liu, Y., Fast Multipole Boundary Element Method (2009), Cambridge University Press: Cambridge University Press New York
[17] Chaillat, S.; Bonnet, M., A new fast multipole formulation for the elastodynamic half-space Green’s tensor, J. Comput. Phys., 258, 787-808 (2014) · Zbl 1349.74349
[18] Durán, M.; Godoy, E.; Nédélec, J. C., Theoretical aspects and numerical computation of the time-harmonic Green’s function for an isotropic elastic halfplane with an impedance boundary condition, ESAIM Math. Modelling Numer. Anal., 44, 4, 671-692 (2010) · Zbl 1194.31002
[19] Durán, M.; Muga, I.; Nédélec, J. C., The outgoing time-harmonic elastic wave in a half-plane with free boundary, SIAM J. Appl. Math., 71, 2, 443-464 (2011) · Zbl 1419.74147
[20] Bruno, O. P.; Lyon, M.; Pérez-Arancibia, C.; Turc, C., Windowed green function method for layered-media scattering, SIAM J. Appl. Math., 76, 5, 1871-1898 (2016) · Zbl 1356.78071
[21] DeSanto, J.; Martin, P. A., On the derivation of boundary integral equations for scattering by an infinite one-dimensional rough surface, J. Acoust. Soc. Am., 102, 1, 67 (1997)
[22] Charalambopoulos, A.; Gintides, D.; Kiriaki, K., Radiation conditions for rough surfaces in linear elasticity, Q. J. Mech. Appl. Math., 55, 3, 421-441 (2002) · Zbl 1036.74028
[23] Pérez-Arancibia, C., Windowed Integral Equation Methods for Problems of Scattering By Defects and Obstacles in Layered Media (2016), California Institute of Technology, (Ph.D. thesis)
[24] Arias, I.; Achenbach, J. D., Rayleigh wave correction for the BEM analysis of elastic layer scattering problems two-dimensional elastodynamic problems in a half-space, Internat. J. Numer. Methods Engrg., 60, 2131-2146 (2004) · Zbl 1070.74050
[25] Chaillat, S.; Bonnet, M., Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics, Wave Motion, 50, 1090-1104 (2013) · Zbl 1454.74142
[26] Grasso, E.; Chaillat, S.; Bonnet, M.; Semblat, J. F., Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics, Eng. Anal. Bound. Elem., 36, 744-758 (2012) · Zbl 1351.74106
[27] Bruno, O. P.; Delourme, B., Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum-including wood anomalies, J. Comput. Phys., 262, 262-290 (2014) · Zbl 1349.74356
[28] Bruno, O. P.; Shipman, S. P.; Turc, C.; Venakides, S., Superalgebraically convergent smoothly windowed lattice sums for doubly periodic green functions in three-dimensional space, Proc. R. Soc. A, 472, 2191 (2016) · Zbl 1371.78330
[29] Monro, J. A., A Super-Algebraically Convergent, Windowing-Based Approach to the Evaluation of Scattering from Periodic Rough Surfaces (2007), California Institute of Technology, (Ph.D. thesis)
[30] Bruno, O. P.; Pérez-Arancibia, C., Windowed Green function method for the Helmholtz equation in presence of multiply layered media, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 473, 2202, Article 20170161 pp. (2017) · Zbl 1402.78011
[31] Bruno, O. P.; Garza, E.; Pérez-Arancibia, C., Windowed Green function method for nonuniform open-waveguide problems, IEEE Trans. Antennas and Propagation, 65, 4684-4692 (2017)
[32] Chaubell, J.; Bruno, O. P.; Ao, C. O., Evaluation of em-wave propagation in fully three dimensional atmospheric refractive index distributions, Radio Sci., 44, 1, RS1012 (2009)
[33] Bao, G.; Xu, L.; Yin, T., Boundary integral equation methods for the elastic and thermoelastic waves in three dimensions, Comput. Methods Appl. Methanics Eng., 354, 464-486 (2019) · Zbl 1441.74289
[34] Yin, T.; Hsiao, G. C.; Xu, L., Boundary integral equation methods for the two dimensional fluid-solid interaction problem, SIAM J. Numer. Anal., 55, 5, 2361-2393 (2017) · Zbl 1386.35056
[35] Bruno, O. P.; Garza, E., A Chebyshev-based rectangular-polar integral solver for scattering by general geometries described by non-overlapping patches, J. Comput. Phys., 421, Article 109740 pp. (2020) · Zbl 07508365
[36] Bruno, O. P.; Yin, T., Regularized integral equation methods for elastic scattering problems in three dimensions, J. Comput. Phys., 410, Article 109350 pp. (2020) · Zbl 1436.65211
[37] Arens, T.; Hohage, T., On radiation conditions for rough surface scattering problems, IMA J. Appl. Math., 70, 839-847 (2005) · Zbl 1100.35101
[38] Peng, D.-G., Normal Mode Acoustic Scattering Considering Elastic Layers over a Half Space (1997), Massachusetts Institute of Technology, (Master thesis)
[39] Thorsos, E. I., The validity of the kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum, J. Acoust. Soc. Am., 83, 78-92 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.