×

A Chebyshev-based rectangular-polar integral solver for scattering by geometries described by non-overlapping patches. (English) Zbl 07508365

Summary: This paper introduces a high-order-accurate strategy for integration of singular kernels and edge-singular integral densities that appear in the context of boundary integral equation formulations for the problem of acoustic scattering. In particular, the proposed method is designed for use in conjunction with geometry descriptions given by a set of arbitrary non-overlapping logically-quadrilateral patches – which makes the algorithm particularly well suited for computer-aided design (CAD) geometries. Fejér’s first quadrature rule is incorporated in the algorithm, to provide a spectrally accurate method for evaluation of contributions from far integration regions, while highly-accurate precomputations of singular and near-singular integrals over certain “surface patches” together with two-dimensional Chebyshev transforms and suitable surface-varying “rectangular-polar” changes of variables, are used to obtain the contributions for singular and near-singular interactions. The overall integration method is then used in conjunction with the linear-algebra solver GMRES to produce solutions for sound-soft open- and closed-surface scattering obstacles, including an application to an aircraft described by means of a CAD representation. The approach is robust, fast, and highly accurate: use of a few points per wavelength suffices for the algorithm to produce far-field accuracies of a fraction of a percent, and slight increases in the discretization densities give rise to significant accuracy improvements.

MSC:

65-XX Numerical analysis
74-XX Mechanics of deformable solids

Software:

VisIt

References:

[1] Bruno, O. P.; Kunyansky, L. A.; Fast, A., High-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications, J. Comput. Phys., 169, 80-110 (2001) · Zbl 1052.76052
[2] Ganesh, M.; Graham, I., A high-order algorithm for obstacle scattering in three dimensions, J. Comput. Phys., 198, 211-242 (2004) · Zbl 1052.65108
[3] Bremer, J.; Gimbutas, Z., A Nyström method for weakly singular integral operators on surfaces, J. Comput. Phys., 231, 4885-4903 (2012) · Zbl 1245.65177
[4] Klöckner, A.; Barnett, A.; Greengard, L.; O’Neil, M., Quadrature by expansion: a new method for the evaluation of layer potentials, J. Comput. Phys., 252, 332-349 (2013) · Zbl 1349.65094
[5] Pérez-Arancibia, C.; Faria, L. M.; Turc, C., Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D, J. Comput. Phys., 376, 411-434 (2019) · Zbl 1416.65491
[6] Pérez-Arancibia, C.; Turc, C.; Faria, L., Planewave density interpolation methods for 3D Helmholtz boundary integral equations (2019), arXiv preprint · Zbl 1430.45001
[7] Martensen, E., Über eine methode zum räumlichen neumannschen problem mit einer anwendung für torusartige berandungen, Acta Math., 109, 75-135 (1963) · Zbl 0123.29004
[8] Kußmaul, R., Ein numerisches verfahren zur lösung des neumannschen außenraumproblems für die helmholtzsche schwingungsgleichung, Computing, 4, 246-273 (1969) · Zbl 0187.40203
[9] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2013), Springer: Springer New York · Zbl 1266.35121
[10] Turc, C.; Anand, A.; Bruno, O.; Chaubell, J., Efficient solution of three-dimensional problems of acoustic and electromagnetic scattering by open surfaces, (Proceedings of WAVES 2011 (2011))
[11] Johnston, P. R.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Int. J. Numer. Methods Eng., 62, 564-578 (2005) · Zbl 1119.65318
[12] Johnston, B. M.; Johnston, P. R.; Elliott, D., A sinh transformation for evaluating two-dimensional nearly singular boundary element integrals, Int. J. Numer. Methods Eng., 69, 1460-1479 (2007) · Zbl 1194.65143
[13] Bruno, O. P.; Lyon, M.; Pérez-Arancibia, C.; Turc, C., Windowed Green function method for layered-media scattering, SIAM J. Appl. Math., 76, 1871-1898 (2016) · Zbl 1356.78071
[14] Bruno, O. P.; Pérez-Arancibia, C., Windowed Green function method for the Helmholtz equation in the presence of multiply layered media, Proc. R. Soc. A, Math. Phys. Eng. Sci., 473, Article 20170161 pp. (2017) · Zbl 1402.78011
[15] Pérez-Arancibia, C., Windowed integral equation methods for problems of scattering by defects and obstacles in layered media (2016), California Institute of Technology, Applied and Computational Mathematics: California Institute of Technology, Applied and Computational Mathematics Pasadena, CA, USA, Ph.D. thesis
[16] Bruno, O. P.; Garza, E.; Pérez-Arancibia, C., Windowed Green function method for nonuniform open-waveguide problems, IEEE Trans. Antennas Propag., 65, 4684-4692 (2017)
[17] Chandler, G. A.; Graham, I. G., Product integration-collocation methods for noncompact integral operator equations, Math. Comput., 50, 125 (1988) · Zbl 0639.65074
[18] Elschner, J., The double-layer potential operator over polyhedral domains II: spline Galerkin methods, Math. Methods Appl. Sci., 15, 23-37 (1992) · Zbl 0770.65099
[19] Rathsfeld, A., Nyström’s method and iterative solvers for the solution of the double-layer potential equation over polyhedral boundaries, SIAM J. Numer. Anal., 32, 924-951 (1995) · Zbl 0832.65127
[20] Bruno, O. P.; Lintner, S. K., A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space, J. Comput. Phys., 252, 250-274 (2013) · Zbl 1349.78041
[21] Bruno, O. P.; Domínguez, V.; Sayas, F.-J., Convergence analysis of a high-order Nyström integral-equation method for surface scattering problems, Numer. Math., 124, 603-645 (2013) · Zbl 1273.65184
[22] Costabel, M.; Dauge, M., General edge asymptotics of solutions of second-order elliptic boundary value problems I, Proc. R. Soc. Edinb., Sect. A, Math., 123, 109-155 (1993) · Zbl 0791.35032
[23] Markkanen, J.; Ylä-Oijala, P.; Sihvola, A., Surface integral equation method for scattering by DB objects with sharp wedges, Appl. Comput. Electromagn. Soc. J., 26, 367-374 (2011)
[24] Bruno, O. P.; Ovall, J. S.; Turc, C., A high-order integral algorithm for highly singular PDE solutions in Lipschitz domains, Computing, 84, 149-181 (2009) · Zbl 1176.65139
[25] Waldvogel, J., Fast construction of the Fejér and Clenshaw-Curtis quadrature rules, BIT Numer. Math., 46, 195-202 (2006) · Zbl 1091.65028
[26] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes: The Art of Scientific Computing (2007), Cambridge University Press: Cambridge University Press New York
[27] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover Publications, Inc.: Dover Publications, Inc. Mineola, New York · Zbl 0994.65128
[28] Bruno, O. P.; Kunyansky, L. A., Surface scattering in three dimensions: an accelerated high-order solver, Proc. R. Soc. A, Math. Phys. Eng. Sci., 457, 2921-2934 (2001) · Zbl 1067.76073
[29] Gumerov, N. A.; Duraiswami, R., Fast Multipole Methods for the Helmholtz Equation in Three Dimensions (2004), Elsevier: Elsevier San Diego
[30] Childs, H.; Brugger, E.; Whitlock, B.; Meredith, J.; Ahern, S.; Pugmire, D.; Biagas, K.; Miller, M.; Harrison, C.; Weber, G. H.; Krishnan, H.; Fogal, T.; Sanderson, A.; Garth, C.; Bethel, E. W.; Camp, D.; Rübel, O.; Durant, M.; Favre, J. M.; Navrátil, P., VisIt: an end-user tool for visualizing and analyzing very large data, (High Performance Visualization-Enabling Extreme-Scale Scientific Insight (2012), CRC Press), 357-372
[31] Nédélec, J.-C., Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems (2001), Springer: Springer New York · Zbl 0981.35002
[32] Frevillier, T., Suborbital spaceflights (2015), CAD Geometry
[33] Bruno, O. P.; Elling, T.; Turc, C., Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering problems, Int. J. Numer. Methods Eng., 91, 1045-1072 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.