×

Wolbachia invasion to wild mosquito population in stochastic environment. (English) Zbl 1530.92319

Summary: Releasing Wolbachia-infected mosquitoes to invade the wild mosquito population is a method of mosquito control. In this paper, a stochastic mosquito population model with Wolbachia invasion perturbed by environmental fluctuation is studied. Firstly, the well-posedness, positivity, and Markov-Feller property of the solution for this model are proved. Then a group of sharp threshold-type conditions is provided to characterize the long-term behavior of the model, which pinpoints the almost necessary and sufficient conditions for the persistence and extinction of Wolbachia-infected and uninfected mosquito populations. Our results indicate that even for a low initial Wolbachia infection frequency, a successful Wolbachia invasion into the wild mosquito population can be driven by stochastic environmental fluctuations. Finally, some numerical experiments are carried out to support our theoretical results.

MSC:

92D45 Pest management
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Ai, S.; Li, J.; Yu, J.; Zheng, B., Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes. Discrete Contin. Dyn. Syst., Ser. B, 3039-3053 (2022) · Zbl 1500.34035
[2] Baldacchino, F.; Caputo, B.; Chandre, F.; Drago, A.; Alessandra, T.; Montarsi, F.; Drago, A.; della Torre, A.; Montarsi, F.; Rizzoli, A., Control methods against invasive Aedes mosquitoes in Europe: a review. Pest Manag. Sci., 1471-1485 (2015)
[3] Bao, J.; Shao, J., Permanence and extinction of regime-switching predator-prey models. SIAM J. Math. Anal., 725-739 (2016) · Zbl 1337.60147
[4] Benaïm, M.; Schreiber, S. J., Persistence and extinction for stochastic ecological models with internal and external variables. J. Math. Biol., 393-431 (2019) · Zbl 1417.92207
[5] Calisher, C. H., Persistent emergence of dengue. Emerg. Infect. Dis., 738-739 (2005)
[6] Caspari, E.; Watson, G. S., On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 568-570 (1959)
[7] Couret, J.; Dotson, E.; Benedict, M. Q., Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE (2014)
[8] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite-Dimensional Systems (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0849.60052
[9] Evans, S. N.; Hening, A.; Schreiber, S. J., Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments. J. Math. Biol., 325-359 (2015) · Zbl 1322.92057
[10] Hemingway, J.; Ranson, H., Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol., 371-391 (2000)
[11] Hening, A.; Nguyen, D. H., Coexistence and extinction for stochastic Kolmogorov systems. Ann. Appl. Probab., 1893-1942 (2018) · Zbl 1410.60094
[12] Hening, A.; Nguyen, D. H., Stochastic Lotka-Volterra food chains. J. Math. Biol., 135-163 (2018) · Zbl 1392.92075
[13] Hoffmann, A. A.; Montgomery, B. L.; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, P. H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y. S.; Dong, Y.; Cook, H.; Axford, J.; Callahan, A. G.; Kenny, N.; Omodei, C.; McGraw, E. A.; Ryan, P. A.; Ritchie, S. A.; Turelli, M.; O’Neill, S. L., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 454-457 (2011)
[14] Hu, L.; Huang, M.; Tang, M.; Yu, J.; Zheng, B., Wolbachia spread dynamics in stochastic environments. Theor. Popul. Biol., 32-44 (2015) · Zbl 1343.92482
[15] Hu, L.; Huang, M.; Tang, M.; Yu, J.; Zheng, B., Wolbachia spread dynamics in multi-regimes of environmental conditions. J. Theor. Biol., 247-258 (2019) · Zbl 1406.92578
[16] Hu, L.; Tang, M.; Wu, Z.; Xi, Z.; Yu, J., The threshold infection level for Wolbachia invasion in random environments. J. Differ. Equ., 4377-4393 (2019) · Zbl 1406.34072
[17] Hu, L.; Yang, C.; Hui, Y.; Yu, J., Mosquito control based on pesticides and endosymbiotic bacterium Wolbachia. Bull. Math. Biol., 58 (2021) · Zbl 1466.92186
[18] Huang, M.; Luo, J.; Hu, L.; Zheng, B.; Yu, J., Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations. J. Theor. Biol., 1-11 (2018) · Zbl 1400.92490
[19] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1989), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam · Zbl 0684.60040
[20] Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S. L., Wolbachia and the biological control of mosquito-borne disease. EMBO Rep., 508-518 (2011)
[21] Jansen, V. A.A.; Turelli, M.; Godfray, H. C.J., Stochastic spread of Wolbachia. Proc. R. Soc. Lond. B, Biol. Sci., 2769-2776 (2008)
[22] Kallenberg, O., Foundations of Modern Probability (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0996.60001
[23] Khasminskii, R., Stochastic Stability of Differential Equations (2012), Springer: Springer Heidelberg · Zbl 1259.60058
[24] Kyle, J. L.; Harris, E., Global spread and persistence of dengue. Annu. Rev. Microbiol., 71-92 (2008)
[25] Li, X.; Gray, A.; Jiang, D.; Mao, X., Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl., 11-28 (2011) · Zbl 1205.92058
[26] Li, X.; Mao, X.; Yin, G., Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in \(p\) th moment and stability. IMA J. Numer. Anal., 847-892 (2019) · Zbl 1461.65007
[27] Li, X.; Song, G.; Xia, Y.; Yuan, C., Dynamical behaviors of the tumor-immune system in a stochastic environment. SIAM J. Appl. Math., 2193-2217 (2019) · Zbl 1439.92065
[28] Mao, X.; Yuan, C., Stochastic Differential Equations with Markovian Switching (2006), Imperial College Press: Imperial College Press London · Zbl 1126.60002
[29] Nguyena, D. H.; Yin, G.; Zhu, C., Certain properties related to well posedness of switching diffusions. Stoch. Process. Appl., 3135-3158 (2017) · Zbl 1372.60117
[30] Ong, S., Wolbachia goes to work in the war on mosquitoes. Nature (2021), S32-S34
[31] Otero, M.; Schweigmann, N.; Solari, H. G., A stochastic spatial dynamical model for Aedes aegypti. Bull. Math. Biol., 1297-1325 (2008) · Zbl 1142.92028
[32] Predescu, M.; Sirbu, G.; Levins, R.; Awerbuch-Friedlander, T., On the dynamics of a deterministic and stochastic model for mosquito control. Appl. Math. Lett., 919-925 (2007) · Zbl 1128.92041
[33] Qu, Z.; Xue, L.; Hyman, J. M., Modeling the transmission of Wolbachia in mosquitoes for controlling mosquito-borne disease. SIAM J. Appl. Math., 826-852 (2018) · Zbl 1392.92107
[34] Rasić, G.; Endersby, N. M.; Williams, C.; Hoffmann, A. A., Using Wolbachia-based release for suppression of Aedes mosquitoes: insights from genetic data and population simulations. Ecol. Appl., Publ. Ecol. Soc. Am., 1226-1234 (2014)
[35] Schreiber, S. J., Persistence for stochastic difference equations: a mini-review. J. Differ. Equ. Appl., 1381-1403 (2012) · Zbl 1258.39010
[36] Somwang, P.; Yanola, J.; Suwan, W.; Walton, C.; Lumjuan, N.; Prapanthadara, L.; Somboon, P., Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand. Parasitol. Res., 531-537 (2011)
[37] Tuong, T. D.; Nguyen, N. N.; Yin, G., Longtime behavior of a class of stochastic tumor-immune systems. Syst. Control Lett. (2020) · Zbl 1453.92083
[38] Turelli, M.; Hoffmann, A. A., Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol. Biol., 243-255 (1999)
[39] Walker, T.; Johnson, P. H.; Moreira, L. A.; Iturbe-Ormaetxe, I.; Frentiu, F. D.; McMeniman, C. J.; Leong, Y. S.; Dong, Y.; Axford, J.; Kriesner, P.; Lloyd, A. L.; Ritchie, S. A.; O’Neill, S. L.; Hoffmann, A. A., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 450-453 (2011)
[40] Werren, J. H., Biology of Wolbachia. Annu. Rev. Entomol., 587-609 (1997)
[41] Yang, H. M.; Macoris, M. L.G.; Galvani, K. C.; Andrighetti, M. T.M.; Wanderley, D. M.V., Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect., 1188-1202 (2009)
[42] Yu, J., Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model. J. Differ. Equ., 10395-10415 (2020) · Zbl 1457.34084
[43] Yu, J.; Li, J., A mosquito population suppression model by releasing Wolbachia-Infected males. J. Biol. Dyn., 606-620 (2019) · Zbl 1448.92260
[44] Yu, J.; Li, J., Global asymptotic stability in an interactive wild and sterile mosquito model. J. Differ. Equ., 6193-6215 (2020) · Zbl 1444.34103
[45] Yu, J.; Li, J., A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period. J. Math. Biol., 14 (2022) · Zbl 1489.34120
[46] Zhang, X.; Liu, Q.; Zhu, H., Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control. J. Math. Biol., 243-276 (2020) · Zbl 1448.34106
[47] Zheng, B.; Li, J.; Yu, J., One discrete dynamical model on the Wolbachia infection frequency in mosquito populations. Sci. China Math., 1749-1764 (2022) · Zbl 1497.92333
[48] Zheng, B.; Li, J.; Yu, J., Existence and stability of periodic solutions in a mosquito population suppression model with time delay. J. Differ. Equ., 159-178 (2022) · Zbl 1492.34085
[49] Zheng, B.; Tang, M.; Yu, J., Modeling Wolbachia spread in mosquitoes through delay differential equation. SIAM J. Appl. Math., 743-770 (2014) · Zbl 1303.92124
[50] Zheng, B.; Yu, J.; Li, J., Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J. Appl. Math., 718-740 (2021) · Zbl 1468.34074
[51] Zhu, C.; Yin, G., On strong feller, recurrence, and weak stabilization of regime-switching diffusions. SIAM J. Control Optim., 2003-2031 (2009) · Zbl 1282.93201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.