×

Modeling the transmission of Wolbachia in mosquitoes for controlling mosquito-borne diseases. (English) Zbl 1392.92107

Summary: We develop and analyze an ordinary differential equation model to quantify the effectiveness of different approaches in creating a sustained infection of Wolbachia bacteria in wild mosquitoes. Wolbachia is a natural parasitic microbe that can reduce the ability of mosquitoes to spread mosquito-borne viral diseases such as dengue fever, chikungunya, and Zika. It is difficult to sustain an infection of the maternal transmitted Wolbachia in a wild mosquito population because of the reduced fitness of the Wolbachia-infected mosquitoes and cytoplasmic incompatibility limiting maternal transmission. The infection will only persist if the fraction of the infected mosquitoes exceeds a minimum threshold. Our two-sex mosquito model captures the complex transmission cycle by accounting for heterosexual transmission, multiple pregnant states for female mosquitoes, and the aquatic-life stage. We identify important dimensionless numbers and analyze the critical threshold condition for obtaining a sustained Wolbachia infection in the natural population. This threshold effect is characterized by a backward bifurcation with three coexisting equilibria of the system of differential equations: a stable disease-free equilibrium, an unstable intermediate-infection endemic equilibrium, and a stable high-infection endemic equilibrium. We perform sensitivity analysis on epidemiological and environmental parameters to determine their relative importance to Wolbachia transmission and prevalence. We also compare the effectiveness of different integrated mitigation strategies and observe that the most efficient approach to establish the Wolbachia infection is to first reduce the natural mosquitoes and then release both infected males and pregnant females. The initial reduction of natural population could be accomplished by either residual spraying or ovitraps.

MSC:

92D30 Epidemiology
34K18 Bifurcation theory of functional-differential equations
93A30 Mathematical modelling of systems (MSC2010)
93C15 Control/observation systems governed by ordinary differential equations

References:

[1] N. L. Achee, F. Gould, T. A. Perkins, R. C. Reiner Jr, A. C. Morrison, S. A. Ritchie, D. J. Gubler, R. Teyssou, and T. W. Scott, {\it A critical assessment of vector control for dengue prevention}, PLoS Negl. Trop. Dis., 9 (2015), e0003655.
[2] L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service, and S. L. Dobson, {\it Sterile-insect methods for control of mosquito-borne diseases: An analysis}, Vector-Borne Zoonotic Dis., 10 (2010), pp. 295-311.
[3] American Mosquito Control Association, {\it Control}, (2017).
[4] R. Barrera, M. Amador, V. Acevedo, B. Caban, G. Felix, and A. J. Mackay, {\it Use of the CDC autocidal gravid ovitrap to control and prevent outbreaks of Aedes aegypti (Diptera: Culicidae)}, J. Med. Entomol., 51 (2014), pp. 145-154.
[5] P. Belton, {\it Attractton of male mosquitoes to sound}, J. Amer. Mosq. Control Assoc., 10 (1994), pp. 297-301.
[6] Centers for Disease Control and Prevention, {\it Dengue: Prevention}, (2017).
[7] Centers for Disease Control and Prevention, {\it Chikungunya: Prevention}, (2017).
[8] Centers for Disease Control and Prevention, {\it Zika Virus: Treatment}, (2017).
[9] N. Chitnis, J. M. Hyman, and J. M. Cushing, {\it Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model}, Bull. Math. Biol., 70 (2008), pp. 1272-1296. · Zbl 1142.92025
[10] H. L. C. Dutra, M. N. Rocha, F. B. S. Dias, S. B. Mansur, E. P. Caragata, and L. A. Moreira, {\it Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes}, Cell Host Microbes, 19 (2016), pp. 771-774.
[11] World Mosquito Program, {\it Our Research: Wolbachia}. (2017).
[12] J. Z. Farkas and P. Hinow, {\it Structured and unstructured continuous models for Wolbachia infections}, Bull. Math. Biol., 72 (2010), pp. 2067-2088. · Zbl 1201.92044
[13] L. Field, A. James, M. Turelli, and A. Hoffmann, {\it Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations}, Insect Molecular Biol., 8 (1999), pp. 243-255.
[14] W. Foster and E. Walker, {\it Mosquitoes (Culicidae)}, in Medical and Veterinary Entomolgy, Academic Press, Amsterdam, 2002, pp. 203-262.
[15] K. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, {\it How many species are infected with Wolbachia?–A statistical analysis of current data}, FEMS Microbiol. Lett., 281 (2008), pp. 215-220.
[16] A. A. Hoffmann, I. Iturbe-Ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington, J. K. Axford, B. Montgomery, A. P. Turley, and S. L. O’Neill, {\it Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations}, PLoS Negl. Trop. Dis., 8 (2014), e3115.
[17] H. Hughes and N. F. Britton, {\it Modelling the use of Wolbachia to control dengue fever transmission}, Bull. Math. Biol., 75 (2013), pp. 796-818. · Zbl 1273.92034
[18] J. C. Kamgang and G. Sallet, {\it Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)}, Math. Biosci., 213 (2008), pp. 1-12. · Zbl 1135.92030
[19] M. J. Keeling, F. Jiggins, and J. M. Read, {\it The invasion and coexistence of competing Wolbachia strains}, Heredity, 91 (2003), pp. 382-388.
[20] J. Koiller, M. Da Silva, M. Souza, C. Codeço, A. Iggidr, and G. Sallet, {\it Aedes, Wolbachia and Dengue}, Research report, Inria Nancy - Grand Est, Villers-lès-Nancy, France, 2014, .
[21] H. Laven, {\it Cytoplasmic inheritance in Culex}, Nature, 177 (1956), pp. 141-142.
[22] N. Lumjuan, L. McCarroll, L.-a. Prapanthadara, J. Hemingway, and H. Ranson, {\it Elevated activity of an epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti}, Insect Biochem. Molec. Biol., 35 (2005), pp. 861-871.
[23] E. A. McGraw and S. L. O’neill, {\it Beyond insecticides: New thinking on an ancient problem}, Nat. Rev. Microbiol., 11 (2013), pp. 181-193.
[24] C. J. McMeniman, R. V. Lane, B. N. Cass, A. W. Fong, M. Sidhu, Y.-F. Wang, and S. L. O’neill, {\it Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti}, Science, 323 (2009), pp. 141-144.
[25] C. J. McMeniman and S. L. O’Neill, {\it A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence}, PLoS Negl. Trop. Dis., 4 (2010), e748.
[26] L. A. Moreira, I. Iturbe-Ormaetxe, J. A. Jeffery, G. Lu, A. T. Pyke, L. M. Hedges, B. C. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, et al., {\it A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium}, Cell, 139 (2009), pp. 1268-1278.
[27] M. Z. Ndii, R. I. Hickson, D. Allingham, and G. Mercer, {\it Modelling the transmission dynamics of dengue in the presence of Wolbachia}, Math. Biosci., 262 (2015), pp. 157-166. · Zbl 1315.92083
[28] M. Z. Ndii, R. I. Hickson, and G. N. Mercer, {\it Modelling the introduction of Wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission}, ANZIAM J., 53 (2012), pp. 213-227. · Zbl 1316.93104
[29] H. T. Nguyen, P. I. Whelan, M. S. Shortus, and S. P. Jacups, {\it Evaluation of bifenthrin applications in tires to prevent Aedes mosquito breeding}, J. Amer. Mosq. Control Assoc., 25 (2009), pp. 74-82.
[30] L. O’Connor, C. Plichart, A. C. Sang, C. L. Brelsfoard, H. C. Bossin, and S. L. Dobson, {\it Open release of male mosquitoes infected with a Wolbachia biopesticide: Field performance and infection containment}, PLoS Negl. Trop. Dis., 6 (2012), e1797.
[31] S. Promsiri, A. Naksathit, M. Kruatrachue, and U. Thavara, {\it Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish}, Insect Sci., 13 (2006), pp. 179-188.
[32] S. A. Ritchie, J. N. Hanna, S. L. Hills, J. P. Piispanen, W. J. H. McBride, A. Pyke, and R. L. Spark, {\it Dengue control in north Queensland, Australia: Case recognition and selective indoor residual spraying}, Dengue Bull., 26 (2002), pp. 7-13.
[33] S. A. Ritchie, L. Rapley, C. Williams, P. Johnson, M. Larkman, R. Silcock, S. Long, and R. Russell, {\it A lethal ovitrap-based mass trapping scheme for dengue control in Australia: I. Public acceptability and performance of lethal ovitraps}, Med. Vet. Entomol., 23 (2009), pp. 295-302.
[34] M. Segoli, A. A. Hoffmann, J. Lloyd, G. J. Omodei, and S. A. Ritchie, {\it The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti}, PLoS Negl. Trop. Dis., 8 (2014), e3294.
[35] L. M. Styer, S. L. Minnick, A. K. Sun, and T. W. Scott, {\it Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood}, vector-borne and zoonotic diseases, 7 (2007), pp. 86-98.
[36] W. Tun-Lin, T. Burkot, and B. Kay, {\it Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia}, Med. Vet. Entomol., 14 (2000), pp. 31-37.
[37] M. Turelli and A. A. Hoffmann, {\it Rapid spread of an inherited incompatibility factor in California Drosophila}, Nature, 353 (1991), pp. 440-442.
[38] P. Van den Driessche and J. Watmough, {\it Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission}, Math. Biosci., 180 (2002), pp. 29-48. · Zbl 1015.92036
[39] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, et al., {\it The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations}, Nature, 476 (2011), pp. 450-453.
[40] L. Xue, C. A. Manore, P. Thongsripong, and J. M. Hyman, {\it Two-sex mosquito model for the persistence of Wolbachia}, J. Biol. Dyn., 11 (2017), pp. 216-237. · Zbl 1447.92493
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.